Vai al contenuto principale della pagina

AI in Drug Discovery : First International Workshop, AIDD 2024, Held in Conjunction with ICANN 2024, Lugano, Switzerland, September 19, 2024, Proceedings / / edited by Djork-Arné Clevert, Michael Wand, Kristína Malinovská, Jürgen Schmidhuber, Igor V. Tetko



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: AI in Drug Discovery : First International Workshop, AIDD 2024, Held in Conjunction with ICANN 2024, Lugano, Switzerland, September 19, 2024, Proceedings / / edited by Djork-Arné Clevert, Michael Wand, Kristína Malinovská, Jürgen Schmidhuber, Igor V. Tetko Visualizza cluster
Pubblicazione: Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Edizione: 1st ed. 2025.
Descrizione fisica: 1 online resource (XXXVIII, 176 p. 50 illus., 49 illus. in color.)
Disciplina: 006.3
Soggetto topico: Artificial intelligence
Data mining
Chemistry - Data processing
Artificial Intelligence
Data Mining and Knowledge Discovery
Computational Chemistry
Persona (resp. second.): ClevertDjork-Arné
WandMichael
MalinovskáKristína
SchmidhuberJürgen
TetkoIgor V.
Sommario/riassunto: This open Access book constitutes the refereed proceedings of the First International Workshop on AI in Drug Discovery, AIDD 2024, held as a part of the 33rd International Conference on Artificial Neural Networks, ICANN 2024, in Lugano, Switzerland, on September 19, 2024. The 12 papers presented here were carefully reviewed and selected for these open access proceedings. These papers focus on various aspects of the rapidly evolving field of Artificial Intelligence (AI)-driven drug discovery in chemistry, including Big Data and advanced Machine Learning, eXplainable AI (XAI), Chemoinformatics, Use of deep learning to predict molecular properties, Modeling and prediction of chemical reaction data and Generative models.
Titolo autorizzato: AI in Drug Discovery  Visualizza cluster
ISBN: 9783031723810
3031723813
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910890900403321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Computer Science, . 1611-3349 ; ; 14894