Vai al contenuto principale della pagina

Sustainable Production Innovations : Bioremediation and Other Biotechnologies



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Patel Alok Kumar Visualizza persona
Titolo: Sustainable Production Innovations : Bioremediation and Other Biotechnologies Visualizza cluster
Pubblicazione: Newark : , : John Wiley & Sons, Incorporated, , 2023
©2023
Descrizione fisica: 1 online resource (455 pages)
Altri autori: SharmaAmit Kumar  
Nota di contenuto: Cover -- Title Page -- Copyright Page -- Contents -- Chapter 1 Biolubricant -- 1.1 Introduction -- 1.2 Biolubricant Base Oil -- 1.2.1 Edible and Non-Edible Oils -- 1.2.2 Waste Cooking Oils -- 1.2.3 Microbial Oils -- 1.2.4 Lignocellulose Base Oil -- 1.3 Upgrading Process for Biolubricant Base Oil -- 1.3.1 Esterification/Transesterification -- 1.3.2 Epoxidation, Ring Opening, and Acetylation -- 1.3.3 Selective Hydrogenation -- 1.4 Biolubricant Additive -- 1.4.1 Types of Lubricant Additives -- 1.4.1.1 Viscosity Index Improver -- 1.4.1.2 Antioxidant Agent -- 1.4.1.3 Extreme Pressure Anti-Wear Agent -- 1.4.1.4 Pour Point Depressant -- 1.4.1.5 Others Lubricant Additives -- 1.4.2 Green Lubricating Additive -- 1.4.2.1 Vegetable Oil Based Lubricant Additives -- 1.4.2.2 Lignin Additives for Lubricant Formulation -- 1.4.2.3 Cellulose Additives for Lubricant Formulation -- 1.4.2.4 Amino Acids for Green Lubricating Additive -- 1.5 Perspective -- References -- Chapter 2 Microbial Degradation of Plastics -- 2.1 Introduction -- 2.2 Plastic Polymers and Their Applications -- 2.2.1 Improved Consumer Health and Safety -- 2.2.2 Energy Savings -- 2.2.3 Material Conservation -- 2.2.4 Plastic Polymers and Their Future -- 2.3 Challenges in Plastic Waste Management -- 2.3.1 Problems Associated with Plastic Waste -- 2.3.2 Challenges Found in Plastic Waste Disposal -- 2.3.3 How Plastics Find Their Way into the Ecosystem -- 2.4 Environmental Hazards Caused by Plastics -- 2.4.1 Dissemination of Microplastics -- 2.4.2 Dissemination Route to Groundwater and Becoming Air Borne -- 2.4.3 Impacts of Microplastics on Soil Organisms -- 2.5 Microbial Plastic Degradation -- 2.5.1 Degradation of Plastics -- 2.5.2 Breakdown of Plastics by Microbes -- 2.5.3 Microbial Biomolecules and Plastic Degradation -- 2.5.4 Factors Affecting Plastic Biomineralization.
2.6 Identification Methods of Microplastics -- 2.6.1 Visual Inspection Method -- 2.6.2 Detection Methods Based on Polymer Chemical Structure -- 2.6.2.1 Microplastic Identification with Artificial Intelligence Approach -- 2.7 Conclusion -- References -- Chapter 3 Biotechnological Advances in Cosmetic Industry -- 3.1 Introduction -- 3.2 Polysaccharides from Macroalgae -- 3.2.1 Fucoidans -- 3.2.2 Ulvan -- 3.2.3 Alginate -- 3.2.4 Carrageenan -- 3.2.5 Porphyran -- 3.3 Polysaccharides from Microalgae -- 3.3.1 UV Protective Compounds -- 3.4 Polyphenols -- 3.5 Pigments -- 3.5.1 Chlorophyll -- 3.5.2 Carotenoids -- 3.6 Vitamins -- 3.7 Peptides and Amino Acids -- 3.8 Current Scenario of Use of Algal Bio-Actives in Cosmetics -- 3.9 Other Cosmetic Advances -- 3.9.1 Growth Factors -- 3.9.2 Enzymes -- 3.9.3 Stem Cells -- 3.9.4 Peptides -- 3.9.5 miRNAs -- 3.9.6 Personalized Skincare -- 3.10 Conclusion -- References -- Chapter 4 Large Scale Applications of Nanomaterials for Water Treatment: Challenges, Future Prospects, and the Visionary Future -- 4.1 Introduction -- 4.2 Vast Scientific Doctrine and the March of Science in Nanomaterials and Engineered Nanomaterials -- 4.3 The Scientific Vision of Bioremediation -- 4.4 Applications of Nanomaterials for Water Treatment -- 4.5 The Scientific Vision Behind Environmental Sustainability, Environmental Remediation, and the Road Ahead -- 4.6 Recent Scientific Advancements in the Field of Nanomaterial Applications in Water Treatment -- 4.7 Recent Scientific Advancements in the Field of Nanotechnology -- 4.8 Arsenic and Heavy Metal Groundwater Remediation, Application of Nanomaterials, and the Road Ahead -- 4.9 Conventional and Non-Conventional Environmental Engineering Techniques, the March of Engineering Science, and the Vast Vision for the Future.
4.10 The Status of Environmental Engineering Research in the Global Scenario and the Research Forays Ahead -- 4.11 Future Scientific Recommendations and Future Flow of Scientific Thoughts -- 4.12 Conclusion and Scientific and Engineering Perspectives -- References -- Chapter 5 Green Technologies for Pesticide Contaminated Soil and Water -- 5.1 Introduction -- 5.2 Effect of Pesticides on Soil and Water Environment -- 5.2.1 Deterioration of Water Quality Due to Pesticides -- 5.2.2 Degradation of Soil Quality Due to Pesticides -- 5.3 Bacterial Degradation and Bioremediation of Pesticides from Polluted and Contaminated Soil and Water -- 5.3.1 Bioventing -- 5.3.2 Biosparging -- 5.3.3 Bioaugementation -- 5.3.4 Land Farming -- 5.3.5 Biopiling -- 5.4 Phytoremediation: An Effective Alternative Method -- 5.4.1 Phytotransformation -- 5.4.2 Phytovolatilization -- 5.4.3 Rhizoremediation -- 5.5 Novel Approaches for More Effective Bioremediation -- 5.5.1 Pesticides Biodegradation Using Recombinant Strains -- 5.5.2 Microbial Enzymes and Pathways Involved in Pesticide Degradation -- 5.6 Challenges and Future Prospects -- 5.7 Conclusion -- References -- Chapter 6 Microalgae as Source of High Value Compounds -- 6.1 Introduction -- 6.2 Produced Biocompounds and High-Value Products -- 6.2.1 Lipids -- 6.2.2 Protein and Amino Acids -- 6.2.3 Carbohydrates -- 6.2.4 Vitamins Production -- 6.2.5 Pigments -- 6.3 Conclusions -- Acknowledgements -- References -- Chapter 7 Advance Biotechnological, Pharmaceutical, and Medicinal Applications of Chitinases -- Abbreviation -- 7.1 Introduction -- 7.2 Classification of Chitinases -- 7.3 Application of Chitinases -- 7.3.1 Medicinal Importance of Chitinases -- 7.3.2 Chitinase as Aging in COVID-19 -- 7.3.3 Role of Chitinases as Bioinsecticide -- 7.3.4 Uses of AMCase for Asthma -- 7.3.5 Chitinases as Diagnostic Biomarker.
7.3.6 CHI3L2 as Biochemical Marker for Osteoarthritis -- 7.3.7 Chitinases as Antitumor Drugs -- 7.3.8 Chitinase in Trichomoniasis Therapy -- 7.4 Future Prospects -- Acknowledgements -- References -- Chapter 8 Microbial Degradation of Plastics: Current Perspectives and Challenges -- 8.1 Introduction -- 8.2 Biodegradation of Natural Plastics -- 8.2.1 Polyhydroxyalkanoates Biodegradation -- 8.2.2 Polylactic Acid Biodegradation -- 8.3 Biodegradation of Synthetic Plastics -- 8.3.1 Polythene or Polyethylene Biodegradation -- 8.3.2 Polyurethane Biodegradation -- 8.3.3 Polyvinyl Chloride Biodegradation -- 8.3.4 Polystyrene Biodegradation -- 8.3.5 Polypropylene Biodegradation -- 8.3.6 Polyethylene Terephthalate Biodegradation -- 8.4 Conclusion and Prospects -- References -- Chapter 9 Microbial Application in Food Industry -- 9.1 Introduction -- 9.1.1 Production of Enzymes -- 9.1.2 Production of Organic Acids -- 9.2 Production of Colouring Agents and Flavours in Food Industry -- 9.3 Microbial Production of Flavour -- 9.4 Production of Polyhydric Alcohols -- 9.5 Production of Vitamins -- 9.5.1 Fat-Soluble Vitamins -- 9.5.2 Water Soluble Vitamins -- 9.6 Production of Lipids and Glycolipids -- 9.7 Microbes as Food -- 9.8 Solid State Fermentation and Its Application in Food Industry -- 9.9 Non-Beneficial or Food Borne Pathogens Detection -- 9.9.1 Nucleic Acid-Based Pathogen Detection -- 9.9.2 Immunological Based Methods -- 9.9.3 Biosensor Based Methods -- 9.9.3.1 Electrochemical Based Biosensors -- 9.9.3.2 Optical-Based Biosensors -- 9.9.3.3 Mass Based Biosensors -- 9.10 Conclusions -- References -- Chapter 10 Biotechnological Approaches of Algae -- 10.1 Introduction -- 10.2 Algal Biotechnology: Emerging Areas of Applications -- 10.2.1 Bio-Energy -- 10.2.1.1 Bio-Oil -- 10.2.1.2 Bio-Diesel -- 10.2.1.3 Bio-Gas -- 10.2.2 Food Supplements -- 10.2.3 Pigments.
10.2.4 Bioplastic: Alternatives to Petrochemical-Based Plastics -- 10.2.5 Biocleanser -- 10.3 Algal Biotechnology: Emerging Areas of Technology -- 10.3.1 Algal Cultivation -- 10.3.2 Harvesting and Downstream Processing -- 10.3.3 Genetic Engineering -- 10.3.4 Genetic Screening: Phenomics -- 10.4 Conclusion -- References -- Chapter 11 Cellulases: An Approach Towards Current Advances in Biofuel Conversion and Future Prospects -- 11.1 Introduction -- 11.2 Source of Cellulases -- 11.3 Cellulase Structure -- 11.4 Cellulase Mechanism -- 11.5 Production of Cellulases -- 11.6 Application of Cellulases -- 11.7 Production of Bioethanol from Lignocellulose -- 11.8 Conclusion -- 11.8.1 Future Prospects -- Acknowledgements -- References -- Chapter 12 Extraction of Biofuels and Valuable Products (Essential Fatty Acids) from Microalgae: The Greenhouse Gas Emissions -- 12.1 Introduction -- 12.2 Why is Biofuel Necessary? -- 12.3 Biofuel Production Technology -- 12.4 Conversion of Microalgae to Biofuel -- 12.4.1 Cultivation of Microalgae -- 12.4.2 Harvesting -- 12.4.3 Drying and Dewatering -- 12.4.4 Extraction of Oil -- 12.5 Lipid Extraction Techniques -- 12.6 Principal Products Acquired from Microalgae -- 12.6.1 Bioactive Compounds -- 12.6.1.1 Proteins from Microalgae -- 12.6.1.2 Pigments Obtained from Microalgal Biomass: â-Carotene, Lycopene, Astaxanthin, and Phycobiliproteins -- 12.6.1.3 Compounds with Antioxidant Function -- 12.6.1.4 Compounds with Antimicrobial Activity -- 12.6.1.5 Compounds with Anti-Inflammatory Action -- 12.6.1.6 Compounds with Health Promoting Functions -- 12.6.1.7 Compounds with Potential for Degenerative Diseases -- 12.6.1.8 Secondary Metabolites with Potential Commercial Value -- 12.7 Conclusion -- References -- Chapter 13 Bioprocessing of Agricultural and Forest Waste -- 13.1 Introduction -- 13.2 Agricultural Residues -- 13.3 Forest Waste.
13.4 Biomass Composition.
Titolo autorizzato: Sustainable Production Innovations  Visualizza cluster
ISBN: 1-119-79288-6
1-119-79287-8
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910876911603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui