Vai al contenuto principale della pagina
Autore: | Patel Alok Kumar |
Titolo: | Sustainable Production Innovations : Bioremediation and Other Biotechnologies |
Pubblicazione: | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
©2023 | |
Descrizione fisica: | 1 online resource (455 pages) |
Altri autori: | SharmaAmit Kumar |
Nota di contenuto: | Cover -- Title Page -- Copyright Page -- Contents -- Chapter 1 Biolubricant -- 1.1 Introduction -- 1.2 Biolubricant Base Oil -- 1.2.1 Edible and Non-Edible Oils -- 1.2.2 Waste Cooking Oils -- 1.2.3 Microbial Oils -- 1.2.4 Lignocellulose Base Oil -- 1.3 Upgrading Process for Biolubricant Base Oil -- 1.3.1 Esterification/Transesterification -- 1.3.2 Epoxidation, Ring Opening, and Acetylation -- 1.3.3 Selective Hydrogenation -- 1.4 Biolubricant Additive -- 1.4.1 Types of Lubricant Additives -- 1.4.1.1 Viscosity Index Improver -- 1.4.1.2 Antioxidant Agent -- 1.4.1.3 Extreme Pressure Anti-Wear Agent -- 1.4.1.4 Pour Point Depressant -- 1.4.1.5 Others Lubricant Additives -- 1.4.2 Green Lubricating Additive -- 1.4.2.1 Vegetable Oil Based Lubricant Additives -- 1.4.2.2 Lignin Additives for Lubricant Formulation -- 1.4.2.3 Cellulose Additives for Lubricant Formulation -- 1.4.2.4 Amino Acids for Green Lubricating Additive -- 1.5 Perspective -- References -- Chapter 2 Microbial Degradation of Plastics -- 2.1 Introduction -- 2.2 Plastic Polymers and Their Applications -- 2.2.1 Improved Consumer Health and Safety -- 2.2.2 Energy Savings -- 2.2.3 Material Conservation -- 2.2.4 Plastic Polymers and Their Future -- 2.3 Challenges in Plastic Waste Management -- 2.3.1 Problems Associated with Plastic Waste -- 2.3.2 Challenges Found in Plastic Waste Disposal -- 2.3.3 How Plastics Find Their Way into the Ecosystem -- 2.4 Environmental Hazards Caused by Plastics -- 2.4.1 Dissemination of Microplastics -- 2.4.2 Dissemination Route to Groundwater and Becoming Air Borne -- 2.4.3 Impacts of Microplastics on Soil Organisms -- 2.5 Microbial Plastic Degradation -- 2.5.1 Degradation of Plastics -- 2.5.2 Breakdown of Plastics by Microbes -- 2.5.3 Microbial Biomolecules and Plastic Degradation -- 2.5.4 Factors Affecting Plastic Biomineralization. |
2.6 Identification Methods of Microplastics -- 2.6.1 Visual Inspection Method -- 2.6.2 Detection Methods Based on Polymer Chemical Structure -- 2.6.2.1 Microplastic Identification with Artificial Intelligence Approach -- 2.7 Conclusion -- References -- Chapter 3 Biotechnological Advances in Cosmetic Industry -- 3.1 Introduction -- 3.2 Polysaccharides from Macroalgae -- 3.2.1 Fucoidans -- 3.2.2 Ulvan -- 3.2.3 Alginate -- 3.2.4 Carrageenan -- 3.2.5 Porphyran -- 3.3 Polysaccharides from Microalgae -- 3.3.1 UV Protective Compounds -- 3.4 Polyphenols -- 3.5 Pigments -- 3.5.1 Chlorophyll -- 3.5.2 Carotenoids -- 3.6 Vitamins -- 3.7 Peptides and Amino Acids -- 3.8 Current Scenario of Use of Algal Bio-Actives in Cosmetics -- 3.9 Other Cosmetic Advances -- 3.9.1 Growth Factors -- 3.9.2 Enzymes -- 3.9.3 Stem Cells -- 3.9.4 Peptides -- 3.9.5 miRNAs -- 3.9.6 Personalized Skincare -- 3.10 Conclusion -- References -- Chapter 4 Large Scale Applications of Nanomaterials for Water Treatment: Challenges, Future Prospects, and the Visionary Future -- 4.1 Introduction -- 4.2 Vast Scientific Doctrine and the March of Science in Nanomaterials and Engineered Nanomaterials -- 4.3 The Scientific Vision of Bioremediation -- 4.4 Applications of Nanomaterials for Water Treatment -- 4.5 The Scientific Vision Behind Environmental Sustainability, Environmental Remediation, and the Road Ahead -- 4.6 Recent Scientific Advancements in the Field of Nanomaterial Applications in Water Treatment -- 4.7 Recent Scientific Advancements in the Field of Nanotechnology -- 4.8 Arsenic and Heavy Metal Groundwater Remediation, Application of Nanomaterials, and the Road Ahead -- 4.9 Conventional and Non-Conventional Environmental Engineering Techniques, the March of Engineering Science, and the Vast Vision for the Future. | |
4.10 The Status of Environmental Engineering Research in the Global Scenario and the Research Forays Ahead -- 4.11 Future Scientific Recommendations and Future Flow of Scientific Thoughts -- 4.12 Conclusion and Scientific and Engineering Perspectives -- References -- Chapter 5 Green Technologies for Pesticide Contaminated Soil and Water -- 5.1 Introduction -- 5.2 Effect of Pesticides on Soil and Water Environment -- 5.2.1 Deterioration of Water Quality Due to Pesticides -- 5.2.2 Degradation of Soil Quality Due to Pesticides -- 5.3 Bacterial Degradation and Bioremediation of Pesticides from Polluted and Contaminated Soil and Water -- 5.3.1 Bioventing -- 5.3.2 Biosparging -- 5.3.3 Bioaugementation -- 5.3.4 Land Farming -- 5.3.5 Biopiling -- 5.4 Phytoremediation: An Effective Alternative Method -- 5.4.1 Phytotransformation -- 5.4.2 Phytovolatilization -- 5.4.3 Rhizoremediation -- 5.5 Novel Approaches for More Effective Bioremediation -- 5.5.1 Pesticides Biodegradation Using Recombinant Strains -- 5.5.2 Microbial Enzymes and Pathways Involved in Pesticide Degradation -- 5.6 Challenges and Future Prospects -- 5.7 Conclusion -- References -- Chapter 6 Microalgae as Source of High Value Compounds -- 6.1 Introduction -- 6.2 Produced Biocompounds and High-Value Products -- 6.2.1 Lipids -- 6.2.2 Protein and Amino Acids -- 6.2.3 Carbohydrates -- 6.2.4 Vitamins Production -- 6.2.5 Pigments -- 6.3 Conclusions -- Acknowledgements -- References -- Chapter 7 Advance Biotechnological, Pharmaceutical, and Medicinal Applications of Chitinases -- Abbreviation -- 7.1 Introduction -- 7.2 Classification of Chitinases -- 7.3 Application of Chitinases -- 7.3.1 Medicinal Importance of Chitinases -- 7.3.2 Chitinase as Aging in COVID-19 -- 7.3.3 Role of Chitinases as Bioinsecticide -- 7.3.4 Uses of AMCase for Asthma -- 7.3.5 Chitinases as Diagnostic Biomarker. | |
7.3.6 CHI3L2 as Biochemical Marker for Osteoarthritis -- 7.3.7 Chitinases as Antitumor Drugs -- 7.3.8 Chitinase in Trichomoniasis Therapy -- 7.4 Future Prospects -- Acknowledgements -- References -- Chapter 8 Microbial Degradation of Plastics: Current Perspectives and Challenges -- 8.1 Introduction -- 8.2 Biodegradation of Natural Plastics -- 8.2.1 Polyhydroxyalkanoates Biodegradation -- 8.2.2 Polylactic Acid Biodegradation -- 8.3 Biodegradation of Synthetic Plastics -- 8.3.1 Polythene or Polyethylene Biodegradation -- 8.3.2 Polyurethane Biodegradation -- 8.3.3 Polyvinyl Chloride Biodegradation -- 8.3.4 Polystyrene Biodegradation -- 8.3.5 Polypropylene Biodegradation -- 8.3.6 Polyethylene Terephthalate Biodegradation -- 8.4 Conclusion and Prospects -- References -- Chapter 9 Microbial Application in Food Industry -- 9.1 Introduction -- 9.1.1 Production of Enzymes -- 9.1.2 Production of Organic Acids -- 9.2 Production of Colouring Agents and Flavours in Food Industry -- 9.3 Microbial Production of Flavour -- 9.4 Production of Polyhydric Alcohols -- 9.5 Production of Vitamins -- 9.5.1 Fat-Soluble Vitamins -- 9.5.2 Water Soluble Vitamins -- 9.6 Production of Lipids and Glycolipids -- 9.7 Microbes as Food -- 9.8 Solid State Fermentation and Its Application in Food Industry -- 9.9 Non-Beneficial or Food Borne Pathogens Detection -- 9.9.1 Nucleic Acid-Based Pathogen Detection -- 9.9.2 Immunological Based Methods -- 9.9.3 Biosensor Based Methods -- 9.9.3.1 Electrochemical Based Biosensors -- 9.9.3.2 Optical-Based Biosensors -- 9.9.3.3 Mass Based Biosensors -- 9.10 Conclusions -- References -- Chapter 10 Biotechnological Approaches of Algae -- 10.1 Introduction -- 10.2 Algal Biotechnology: Emerging Areas of Applications -- 10.2.1 Bio-Energy -- 10.2.1.1 Bio-Oil -- 10.2.1.2 Bio-Diesel -- 10.2.1.3 Bio-Gas -- 10.2.2 Food Supplements -- 10.2.3 Pigments. | |
10.2.4 Bioplastic: Alternatives to Petrochemical-Based Plastics -- 10.2.5 Biocleanser -- 10.3 Algal Biotechnology: Emerging Areas of Technology -- 10.3.1 Algal Cultivation -- 10.3.2 Harvesting and Downstream Processing -- 10.3.3 Genetic Engineering -- 10.3.4 Genetic Screening: Phenomics -- 10.4 Conclusion -- References -- Chapter 11 Cellulases: An Approach Towards Current Advances in Biofuel Conversion and Future Prospects -- 11.1 Introduction -- 11.2 Source of Cellulases -- 11.3 Cellulase Structure -- 11.4 Cellulase Mechanism -- 11.5 Production of Cellulases -- 11.6 Application of Cellulases -- 11.7 Production of Bioethanol from Lignocellulose -- 11.8 Conclusion -- 11.8.1 Future Prospects -- Acknowledgements -- References -- Chapter 12 Extraction of Biofuels and Valuable Products (Essential Fatty Acids) from Microalgae: The Greenhouse Gas Emissions -- 12.1 Introduction -- 12.2 Why is Biofuel Necessary? -- 12.3 Biofuel Production Technology -- 12.4 Conversion of Microalgae to Biofuel -- 12.4.1 Cultivation of Microalgae -- 12.4.2 Harvesting -- 12.4.3 Drying and Dewatering -- 12.4.4 Extraction of Oil -- 12.5 Lipid Extraction Techniques -- 12.6 Principal Products Acquired from Microalgae -- 12.6.1 Bioactive Compounds -- 12.6.1.1 Proteins from Microalgae -- 12.6.1.2 Pigments Obtained from Microalgal Biomass: â-Carotene, Lycopene, Astaxanthin, and Phycobiliproteins -- 12.6.1.3 Compounds with Antioxidant Function -- 12.6.1.4 Compounds with Antimicrobial Activity -- 12.6.1.5 Compounds with Anti-Inflammatory Action -- 12.6.1.6 Compounds with Health Promoting Functions -- 12.6.1.7 Compounds with Potential for Degenerative Diseases -- 12.6.1.8 Secondary Metabolites with Potential Commercial Value -- 12.7 Conclusion -- References -- Chapter 13 Bioprocessing of Agricultural and Forest Waste -- 13.1 Introduction -- 13.2 Agricultural Residues -- 13.3 Forest Waste. | |
13.4 Biomass Composition. | |
Titolo autorizzato: | Sustainable Production Innovations |
ISBN: | 1-119-79288-6 |
1-119-79287-8 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910876911603321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |