Vai al contenuto principale della pagina

Fundamentals of Springs Mechanics



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Kobelev Vladimir Visualizza persona
Titolo: Fundamentals of Springs Mechanics Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing AG, , 2024
©2024
Edizione: 3rd ed.
Descrizione fisica: 1 online resource (567 pages)
Nota di contenuto: Intro -- Foreword -- Preface -- Introduction -- Aims and Methods of the Book -- Structure of the Book -- Target Audience of the Book -- Contents -- Symbols -- Part I Design of Mechanical Springs -- 1 Principles of Spring Design -- 1.1 Compression, Extension, and Torque of Helical Springs -- 1.1.1 Forces and Moments in Coil Springs -- 1.1.2 Elastic Energy of the Coil Spring -- 1.1.3 Compression and Twist Spring Rates -- 1.1.4 Change in Diameter Due to Simultaneous Compression and Torque Application -- 1.2 Design Formulas for Compression-Extension Springs -- 1.2.1 Stiffness and Stored Energy of Cylindrical Helical Springs -- 1.2.2 Stresses in Spring Wire -- 1.2.3 Fatigue Life and Damage Accumulation Criteria -- 1.3 Helical Springs of Minimal Mass -- 1.3.1 Restricted Optimization Problem -- 1.3.2 Optimization of Helical Springs for Maximal Stress -- 1.3.3 Design for Fatigue Life -- 1.3.4 Spring Quality Parameter for Helical Springs -- 1.4 Semi-elliptic Longitudinal and Transverse Leaf Springs of Minimal Mass -- 1.4.1 Rectangular Cross-Section -- 1.4.2 Circular Cross-Section -- 1.5 Multi-material Design of Springs -- 1.6 Conclusions -- References -- 2 Stress Distributions Over Wire Cross-Section -- 2.1 Warping Function -- 2.2 Prandtl Stress Function -- 2.3 Shear Stresses on Surface of Elliptic and Circular Wires -- 2.4 Shear Stresses on Surface of Ovate Wire -- 2.5 Quasi-elliptical Cross-Section -- 2.6 Hollow Ovate Wire -- 2.7 Helical Spring Deformation Dislocation Character -- 2.7.1 Screw and Edge Dislocations -- 2.7.2 Torsion of Helical Spring -- 2.8 Conclusions -- References -- 3 "Equivalent Columns" for Helical Spring -- 3.1 Static Stability Criteria of Helical Springs -- 3.2 Static "Equivalent Column" Equations -- 3.3 Dynamic "Equivalent Column" Equations -- 3.4 Natural Frequency of Transverse Vibrations.
3.5 Stability Conditions and Buckling of Spring -- 3.6 Buckling of Twisted, Compressed, and Tensioned Helical Spring -- 3.6.1 Instability of Twisted Helical Spring -- 3.6.2 Instability of Helical Springs Under Torque and Axial Force -- 3.6.3 Instability of Tension Spring -- 3.7 Spatial Models for Dynamic Behavior of Helical Springs -- References -- 4 Disk Springs -- 4.1 Thick Shell Model for Disk Springs -- 4.1.1 Mechanical Models of Elastic Disk Springs -- 4.1.2 Geometry of Disk Spring in Undeformed State -- 4.1.3 Mass of Disk Spring with Variable Material Thickness -- 4.1.4 Load-Caused Alteration of Strain and Curvature -- 4.1.5 Disk Springs of Moderate Material Thickness -- 4.2 Disk Springs of Moderate Thickness -- 4.2.1 Deformation of Thick Conical Shell -- 4.2.2 Variation Method for Thick Shell Models of Disk Springs -- 4.2.3 Comparison of Calculation Techniques -- 4.3 Statics of Thin Disk Springs -- 4.3.1 Forces and Moments in Disk Springs -- 4.3.2 Strain Energy of Thin Disk Springs -- 4.3.3 Almen and Laszlo Method for Thin Disk Springs -- 4.3.4 Stresses in Disk Springs -- 4.4 Disk Wave Springs -- 4.4.1 Application Fields of Disk Wave Springs -- 4.4.2 Design Formulas for Linear Disk Wave Springs -- 4.4.3 Design Formulas for Non-linear Disk Wave Springs -- References -- 5 Radially Constrained Disk Springs -- 5.1 Shell Model for Conical Disk Springs -- 5.1.1 Introduction -- 5.1.2 Models of Elastic Disk Springs -- 5.1.3 Geometry of Disk Spring in Undeformed State -- 5.1.4 Variations of Strain and Curvature Due to Axial Contraction of Conical Spring -- 5.1.5 Spring Travel and Heights of Disk Springs -- 5.2 Statics of Disk Springs Using Equations of Axisymmetric Elasticity -- 5.2.1 Deformation of Conical Shell -- 5.2.2 Variation Method for Shell Models of Disk Springs -- 5.3 Forces and Stresses in Disk Springs.
5.4 Deformation of Conical Spring with Both Radially Constrained Edges -- 5.5 Comparison of Spring Constants for Differently Confined Disk Springs -- 5.6 Finite Element Simulation of the Disk Springs with the Free Gliding and Radially Constrained Edges -- 5.7 Conclusions -- References -- 6 Disk Springs with Variable Thickness -- 6.1 Models of Elastic Disk Springs -- 6.2 Geometry of Disk Spring in Undeformed State -- 6.3 Load-Caused Variations of Strain and Curvature -- 6.4 Statics of Disk Springs Using Equations of Axisymmetric Elasticity -- 6.5 Linearly Variable Thickness of Disk Spring -- 6.6 Quadratically Variable Thickness of Disk Spring -- 6.7 Variable Thickness Along the Parallels -- 6.8 Radial Forces on the Radially Constrained Disk Springs -- 6.9 Verification of the Analytical Results with the Finite-Element Simulation -- 6.10 Stresses in Disk Springs -- References -- 7 Thin-Walled Rods with Semi-open Profiles -- 7.1 Thin-Walled Rods with Semi-open Profiles -- 7.1.1 Open, Closed and Semi-open Wall Sections -- 7.1.2 Baseline of Semi-open Cross-Section -- 7.1.3 Main Hypotheses of Thin-Walled Open-Profile Bars -- 7.2 Deformation Behavior of Cross-Sections -- 7.2.1 Deformation of Rods with Opened and Closed Profiles -- 7.2.2 Deformation of Rods with Semi-open Profiles -- 7.3 Statics of Semi-open Profile Bars -- 7.3.1 Normal Stresses in Semi-open Profile Bars -- 7.3.2 Torque and Bi-moment -- 7.3.3 Tangential Stresses in bar Cross-Sections -- 7.3.4 Average Tangential Stress and Equilibrium Conditions -- 7.3.5 Strain Energy of Semi-open Rod -- 7.4 Applications of Thin-Walled Rods with Semi-open Cross-Sections -- 7.4.1 Semi-solid Axis with Twist Beam -- 7.4.2 Mechanical Models of Twist-Beam Axle -- 7.5 Elastic Behavior of Twist-Beam Axles Under Load -- 7.5.1 Loads and Displacements of Twist-Beam Axles -- 7.5.2 Roll Stiffness of Twist-Beam Axle.
7.5.3 Lateral Stiffness of Twist-Beam Axle -- 7.5.4 Camber Stiffness of Twist-Beam Axle -- 7.6 Deformation of Semi-open Beam Under Terminal Load -- 7.6.1 Bending of Semi-open Beam Due to End Moments -- 7.6.2 Torsion Stiffness of Beam with Constant Section Due to Terminal Torques -- 7.6.3 Stresses in the Beam with Constant Section Due to Terminal Torques -- 7.6.4 Equivalent Tensile Stress Due to Simultaneous Bending and Torsion -- 7.6.5 Stiffness Properties of Semi-open Profiles for Automotive Applications -- 7.6.6 Semi-open Beams with Variable Cross-Sections -- References -- Part II Manufacturing of Springs -- 8 Coiling of Helical Springs -- 8.1 Elastic-Plastic Bending and Torsion of Wire -- 8.2 Modified Ramberg-Osgood's Law -- 8.3 Plastic Deformation of Wire During Coiling -- 8.4 Behavior of Wire in Manufacturing Process -- 8.5 Elastic Spring-Back and Appearance of Residual Stresses -- 8.6 Post-coiling Shape of Helical Spring -- 8.7 Conclusions -- References -- 9 Presetting and Residual Stresses in Springs -- 9.1 Elastic-Plastic Deformation During the Presetting Process of Helical Springs -- 9.2 Implicit Formulations for the Stress-Strain Curves of Plastic Materials -- 9.3 Analysis of Active Plastic Torsion and Spring-Back of Circular Wire for Presetting Assessment of Helical Compression Springs -- 9.3.1 Plastic Deformation of Wire During Active Plastic Twisting of a Solid Rod -- 9.3.2 Torque Moment During the Active Plastic Presetting in the Wire Cross Section for Hyperbolic Law -- 9.3.3 Torque Moment During the Active Plastic Presetting in the Wire Cross Section for Ramberg-Osgood Law -- 9.3.4 Elastic Spring-Back and Residual Stresses Appearing -- 9.4 Evaluation of Helical Torsion Spring Presetting by Analysis of Active Plastic Bending of Rectangular Wire -- 9.4.1 Plastic Deformation of Wire During Active Plastic Bending Process.
9.4.2 Bending Moment During the Active Plastic Presetting in the Wire Cross Section for Hyperbolic Law -- 9.4.3 Bending Moment During the Active Plastic Presetting in the Wire Cross Section for Ramberg-Osgood Law -- 9.4.4 Elastic Recovery and Evaluation of Residual Stresses -- 9.5 Explicit Formulations for Plastic Stress-Strain Curves -- 9.5.1 Relationships of Ramberg-Osgood and Johnson-Cook Formulas -- 9.5.2 Torsion of the Rod with Circular Cross-Section -- 9.5.3 Bending of the Rod with Circular Cross-Section -- 9.5.4 Bending of the Rod with Rectangular Cross-Section -- 9.6 Time-Delayed Presetting -- 9.6.1 Instantaneous Ideal Elastic-Ideal Plastic Flow -- 9.6.2 Equations of Creep During Time-Delayed Presetting -- 9.6.3 Creep Deformation After Instant Plastic Flow -- 9.6.4 Elastic Spring-Back and Occurrence of Residual Stresses -- 9.6.5 Creep Deformation After Instant Plastic Flow for Garofalo Law -- 9.7 Conclusions -- 9.8 Summary of Principal Results -- References -- Part III Service Life and Durability of Springs -- 10 Creep and Relaxation of Springs -- 10.1 Operational Damage of Spring Elements -- 10.2 Common Creep Constitutive Equations -- 10.2.1 Constitutive Equations for Creep of Spring Elements -- 10.2.2 Time-Dependent Constitutive Equations -- 10.2.3 Experimental Acquisition of Creep Laws -- 10.2.4 Time-Invariant Constitutive Equations -- 10.3 Scalar Constitutive Equations for Uniaxial Stresses -- 10.3.1 Norton-Bailey Law -- 10.3.2 Garofalo Creep Law -- 10.3.3 Exponential Law -- 10.4 Creep and Relaxation of Twisted Rods -- 10.4.1 Constitutive Equations for Relaxation in Torsion -- 10.4.2 Torque Relaxation for Norton-Bailey Law -- 10.4.3 Torque Relaxation for Garofalo Law -- 10.4.4 Torque Relaxation for Exponential Law -- 10.5 Creep and Relaxation of Helical Coiled Springs -- 10.5.1 Phenomena of Relaxation and Creep.
10.5.2 Relaxation of Helical Springs.
Titolo autorizzato: Fundamentals of Springs Mechanics  Visualizza cluster
ISBN: 9783031585845
9783031585838
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910872189703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui