Vai al contenuto principale della pagina

Electromagnetic nanomaterials : properties and applications / / edited by Tariq Altalhi



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Electromagnetic nanomaterials : properties and applications / / edited by Tariq Altalhi Visualizza cluster
Pubblicazione: Hoboken, Beverly, NJ : , : John Wiley & Sons, Inc., , [2023]
©2023
Edizione: 1st ed.
Descrizione fisica: 1 online resource (389 pages)
Disciplina: 620.115
Soggetto topico: Nanostructured materials
Electromagnetic interference
Persona (resp. second.): AltalhiTariq
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Metamaterial-Based Antenna and Absorbers in THz Range -- 1.1 Introduction -- 1.1.1 Terahertz Region -- 1.1.2 Metamaterials -- 1.1.3 Classification of Metamaterials -- 1.1.3.1 Epsilon-Negative Metamaterials -- 1.1.3.2 Mu-Negative Metamaterials -- 1.1.3.3 Double-Negative Metamaterials -- 1.2 Design Approach -- 1.2.1 Resonant Approach -- 1.2.2 Non-Resonant Approach -- 1.2.3 Hybrid Approach -- 1.3 Applications -- 1.3.1 Metamaterial Absorbers -- 1.3.1.1 Switchable Absorbers-Reflectors -- 1.3.1.2 Switchable Absorbers -- 1.3.1.3 Tuneable Absorbers -- 1.3.2 Metamaterial Antenna -- 1.3.2.1 Miniaturization -- 1.3.2.2 Gain and Bandwidth Improvement -- 1.3.2.3 Circular Polarization -- 1.3.2.4 Isolation -- 1.4 Conclusion -- References -- Chapter 2 Chiral Metamaterials -- 2.1 Introduction -- 2.2 Fundamentals of Chiral Metamaterials and Optical Activity Control -- 2.3 Construction of Chiral Metamaterial -- 2.4 Applications -- 2.4.1 Chiral Metamaterials in the Chiral Sensing -- 2.4.2 Reconfigurable Chiral Metamaterial -- 2.4.3 Chiral Metamaterial Absorber -- 2.4.4 Applications of Chiral Metamaterial as Multifunctional Sensors -- 2.4.4.1 Applications of Chiral Metamaterial as Temperature, Humidity, and Moisture Sensors -- 2.5 Conclusion and Future Perspective -- Acknowledgment -- References -- Chapter 3 Metamaterial Perfect Absorbers for Biosensing Applications -- 3.1 Introduction -- 3.1.1 Theoretical Backgrounds -- 3.1.1.1 Impedance Matching Theory -- 3.1.1.2 Interference Theory -- 3.1.2 Metamaterial Designs -- 3.1.2.1 Equivalent Circuit and Impedance Matching in Metamaterial Perfect Absorbers -- 3.1.2.2 Transmission Line Theory -- 3.1.3 Biosensing with Metamaterial Perfect Absorbers -- 3.1.3.1 Refractive Index -- 3.1.3.2 Surface-Enhanced Infrared Absorption.
3.2 Conclusion and Future Work -- References -- Chapter 4 Insights and Applications of Double Positive Medium Metamaterials -- 4.1 Introduction -- 4.2 Insights on the Electromagnetic Metamaterials -- 4.3 Applications of DPS Metamaterials -- 4.4 Conclusion -- Acknowledgments -- References -- Chapter 5 Study on Application of Photonic Metamaterial -- 5.1 Introduction -- 5.2 Types of Metamaterials -- 5.3 Negative Index Metamaterial -- 5.4 Terahertz Metamaterials -- 5.5 Plasmonic Materials -- 5.6 Applications -- 5.6.1 In Optical Field -- 5.6.2 In Medical Devices -- 5.6.3 In Aerospace -- 5.6.4 In Solar Power Management -- 5.7 Conclusion -- References -- Chapter 6 Theoretical Models of Metamaterial -- 6.1 Introduction -- 6.2 Background of Metamaterials -- 6.3 Theoretical Models of Metamaterials -- 6.3.1 Lumped Equivalent Circuit Model -- 6.3.2 Effective Medium Theory -- 6.3.3 Transmission Line Theory -- 6.3.4 Coupled-Mode Theory -- 6.3.5 Interference Theory -- 6.3.6 Casimir-Lifshitz Theory -- 6.4 Conclusion -- References -- Chapter 7 Frequency Bands Metamaterials -- 7.1 Introduction -- 7.2 Frequency Bands Metamaterials -- 7.2.1 EM Metamaterials -- 7.2.2 Metamaterial Response Tuning -- 7.2.2.1 Persistent Tuning -- 7.2.3 Spectroscopic Investigation -- 7.2.4 Optical Metamaterials -- 7.2.5 Optical Materials and Electronic Structures -- 7.2.6 Optical Properties of Metals -- 7.2.7 Metal-Dielectric Composites -- 7.2.8 Acoustic Metamaterials -- 7.2.9 Elastic Metamaterials -- 7.3 Penta Metamaterials -- 7.4 Reconfigurable Metamaterials for Different Geometrics -- 7.4.1 3D Freestanding Reconfigurable Metamaterial -- 7.4.2 Reconfigurable EM Metamaterials -- 7.5 Conclusion -- References -- Chapter 8 Metamaterials for Cloaking Devices -- 8.1 Introduction -- 8.2 What is Cloaking and Invisibility? -- 8.3 Basic Concepts of Cloaking.
8.4 Design and Simulation of Metamaterial Invisibility Cloak -- 8.5 Types of Cloaking -- 8.5.1 Optical Cloaking -- 8.5.2 Acoustic Cloaking -- 8.5.3 Elastic Cloaking -- 8.5.4 Thermal Cloaking -- 8.5.5 Mass Diffusion Cloaking -- 8.5.6 Light Diffusion Cloaking -- 8.5.7 Multifunctional Cloaking -- 8.6 Cloaking Techniques -- 8.6.1 Scattering Cancelation Method -- 8.6.2 Coordinate Transformation Technique -- 8.6.3 Transmission -- 8.6.4 Other Cloaking Techniques -- 8.7 Conclusion -- References -- Chapter 9 Single Negative Metamaterials -- 9.1 Introduction -- 9.2 Classification of Metamaterials -- 9.3 Types of Metamaterials -- 9.3.1 Electromagnetic Metamaterials -- 9.3.2 Negative Refractive Index -- 9.4 Different Classes of Electromagnetic Metamaterials -- 9.4.1 Double Negative Metamaterials -- 9.4.2 Single Negative Metamaterials -- 9.4.3 Chiral Metamaterials -- 9.4.4 Hyperbolic Metamaterials -- 9.5 Applications -- 9.6 Conclusion -- References -- Chapter 10 Negative-Index Metamaterials -- 10.1 Introduction -- 10.2 The Journey from Microwave Frequency to Electromagnetic Radiation -- 10.3 Experimentation to Justify Negative Refraction -- 10.3.1 Reverse Propagation -- 10.3.2 Properties of NIMs -- 10.4 Electromagnetic Response of Materials -- 10.5 Application of NIMs -- 10.6 Conclusions -- Acknowledgments -- References -- Chapter 11 Properties and Applications of Electromagnetic Metamaterials -- 11.1 Introduction -- 11.2 Hyperbolic Metamaterials -- 11.3 Properties of Metamaterials -- 11.4 Application of Metamaterials -- 11.5 Single Negative Metamaterials -- 11.6 Hyperbolic Metamaterials -- 11.7 Classes of Metamaterials -- 11.8 Electromagnetic Metamaterials -- 11.9 Terahertz Metamaterials -- 11.10 Photonic Metamaterials -- 11.11 Tunable Metamaterial -- 11.12 Types of Tunable Metamaterials -- 11.13 Nonlinear Metamaterials -- 11.14 Absorber of Metamaterial.
11.15 Acoustic Metamaterials -- References -- Chapter 12 Plasmonic Metamaterials -- 12.1 Introduction -- 12.2 Negative Refraction and Refractive Indexes -- 12.3 Fundamentals of Plasmonics -- 12.3.1 Surface Plasmon Polaritons -- 12.3.2 Localized Surface Plasmons -- 12.3.3 Applications of Plasmonics -- 12.4 Types of Plasmonics Metamaterials -- 12.4.1 Graphene-Base Plasmonic Metamaterials -- 12.4.2 Nanorod Plasmonic Metamaterials -- 12.4.3 Plasmonic Metal Surfaces -- 12.4.4 Self-Assembled Plasmonic Metamaterials -- 12.4.5 Nonlinear Plasmonic Materials -- 12.4.6 2D-Plasmonic Metamaterials -- 12.5 Applications of Plasmonics Metamaterials -- 12.5.1 Nanochemistry -- 12.5.2 Biosensing -- 12.5.3 Filters -- 12.5.4 Planner Ring Resonator -- 12.5.5 Optical Computing -- 12.5.6 Photovoltaics -- 12.6 Conclusion -- References -- Chapter 13 Nonlinear Metamaterials -- 13.1 Introduction -- 13.2 Nonlinear Effects in Metamaterials -- 13.3 Design of Nonlinear Metamaterials -- 13.3.1 Liquid Crystal-Based Nonlinear Metamaterials -- 13.3.2 Ferrite-Based Tunable Metamaterials -- 13.3.3 Varactor/Capacitor-Loaded Tunable Metamaterials -- 13.3.4 Other Tunable Metamaterials -- 13.4 Nonlinear Properties of Metamaterials -- 13.5 Types of Nonlinear Metamaterials -- 13.5.1 Nonlinear Electric Materials -- 13.5.2 Nonlinear Magnetic Metamaterials -- 13.5.3 Plasmonic Nonlinear Metamaterials -- 13.5.4 Dielectric Nonlinear Metamaterials -- 13.6 Applications -- 13.6.1 Tunable Split-Ring Resonators for Nonlinear Negative-Index Metamaterials -- 13.6.2 SRR Microwave Nonlinear Tunable Metamaterials -- 13.7 Overview of Nonlinear Metamaterials -- 13.8 Conclusion -- References -- Chapter 14 Promising Future of Tunable Metamaterials -- 14.1 Introduction -- 14.1.1 Examples of Metamaterials -- 14.1.1.1 Electromagnetic Metamaterials -- 14.1.1.2 Chiral Metamaterials -- 14.1.1.3 Terahertz Metamaterials.
14.1.1.4 Photonic Metamaterials -- 14.1.1.5 Tunable Metamaterials -- 14.1.1.6 Frequency Selective Surface Based-Metamaterials (FSS) -- 14.1.1.7 Nonlinear Metamaterials -- 14.2 Tuning Methods -- 14.2.1 Tuning by Additional Materials -- 14.2.2 Tuning by Changing the Structural Geometry -- 14.2.3 Tuning by Changing the Constituent Materials -- 14.2.4 Tuning by Changing of the Surrounding Environment -- 14.3 Types of Tunable Metamaterials -- 14.3.1 Thermally Tunable Metamaterials -- 14.3.1.1 Optically Driven Tunable Metamaterials -- 14.3.2 Structurally Deformable Metamaterials -- 14.3.3 Electrically Tunable Metamaterials -- 14.4 Significant Developments -- 14.4.1 Vehicles with Mobile Broadband -- 14.4.2 Transportation Security Administration -- 14.4.3 Tracking Planes, Trains, and Automobiles -- 14.4.4 Holographic Something -- 14.4.5 Wireless Charging with Metamaterials -- 14.4.6 Seeing Around Corners with Radar -- 14.4.7 Manipulating Light -- 14.4.8 Sound-Proof 'Invisible Window' -- 14.4.9 Terahertz Instruments -- 14.5 Future -- 14.6 Conclusion -- References -- Chapter 15 Metamaterials for Sound Filtering -- 15.1 Introduction -- 15.1.1 Types of Metamaterials -- 15.1.1.1 Piezoelectric Metamaterial -- 15.1.1.2 Electromagnetic Metamaterial -- 15.1.1.3 Chiral Metamaterial -- 15.1.1.4 Nonlinear Metamaterial -- 15.1.1.5 Terahertz Metamaterial -- 15.1.1.6 Acoustic Metamaterial -- 15.1.1.7 Photonic Metamaterial -- 15.2 Acoustic Metamaterials -- 15.2.1 Types and Applications of Acoustic Metamaterials -- 15.3 Phononic Crystals -- 15.4 Metamaterials for Sound Filtering -- 15.4.1 Fabrication and Assembly of Metamaterials for Sound Filtering and Attenuation -- 15.4.2 Fabrication of AMM and PC -- 15.4.3 Assembly of AMM and PC -- 15.5 Conclusion -- References -- Chapter 16 Radar Cross-Section Reducing Metamaterials -- 16.1 Introduction.
16.1.1 The Electromagnetic Radiation and Spectrum.
Titolo autorizzato: Electromagnetic nanomaterials  Visualizza cluster
ISBN: 1-394-16707-5
1-394-16706-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910830305303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui