Vai al contenuto principale della pagina
Autore: | Katz Nicholas M. <1943-> |
Titolo: | Convolution and equidistribution : Sato-Tate theorems for finite-field Mellin transforms / / Nicholas M. Katz |
Pubblicazione: | Princeton ; ; Oxford, : Princeton University Press, c2012 |
Edizione: | Course Book |
Descrizione fisica: | 1 online resource (213 p.) |
Disciplina: | 515/.723 |
Soggetto topico: | Mellin transform |
Convolutions (Mathematics) | |
Sequences (Mathematics) | |
Soggetto non controllato: | ArtinГchreier reduced polynomial |
Emanuel Kowalski | |
EulerАoincar formula | |
Frobenius conjugacy class | |
Frobenius conjugacy | |
Frobenius tori | |
GoursatЋolchinВibet theorem | |
Kloosterman sheaf | |
Laurent polynomial | |
Legendre | |
Mellin transform | |
Pierre Deligne | |
Ron Evans | |
Tannakian category | |
Tannakian groups | |
Zeeev Rudnick | |
algebro-geometric | |
autodual objects | |
autoduality | |
characteristic two | |
connectedness | |
dimensional objects | |
duality | |
equidistribution | |
exponential sums | |
fiber functor | |
finite field Mellin transform | |
finite field | |
finite fields | |
geometrical irreducibility | |
group scheme | |
hypergeometric sheaf | |
interger monic polynomials | |
isogenies | |
lie-irreducibility | |
lisse | |
middle convolution | |
middle extension sheaf | |
monic polynomial | |
monodromy groups | |
noetherian connected scheme | |
nonsplit form | |
nontrivial additive character | |
number theory | |
odd characteristic | |
odd prime | |
orthogonal case | |
perverse sheaves | |
polynomials | |
pure weight | |
semisimple object | |
semisimple | |
sheaves | |
signs | |
split form | |
supermorse | |
theorem | |
theorems | |
Classificazione: | SI 830 |
Note generali: | Description based upon print version of record. |
Nota di bibliografia: | Includes bibliographical references and index. |
Nota di contenuto: | Front matter -- Contents -- Introduction -- CHAPTER 1. Overview -- CHAPTER 2. Convolution of Perverse Sheaves -- CHAPTER 3. Fibre Functors -- CHAPTER 4. The Situation over a Finite Field -- CHAPTER 5. Frobenius Conjugacy Classes -- CHAPTER 6. Group-Theoretic Facts about Ggeom and Garith -- CHAPTER 7. The Main Theorem -- CHAPTER 8. Isogenies, Connectedness, and Lie-Irreducibility -- CHAPTER 9. Autodualities and Signs -- CHAPTER 10. A First Construction of Autodual Objects -- CHAPTER 11. A Second Construction of Autodual Objects -- CHAPTER 12. The Previous Construction in the Nonsplit Case -- CHAPTER 13. Results of Goursat-Kolchin-Ribet Type -- CHAPTER 14. The Case of SL(2); the Examples of Evans and Rudnick -- CHAPTER 15. Further SL(2) Examples, Based on the Legendre Family -- CHAPTER 16. Frobenius Tori and Weights; Getting Elements of Garith -- CHAPTER 17. GL(n) Examples -- CHAPTER 18. Symplectic Examples -- CHAPTER 19. Orthogonal Examples, Especially SO(n) Examples -- CHAPTER 20. GL(n) x GL(n) x ... x GL(n) Examples -- CHAPTER 21. SL(n) Examples, for n an Odd Prime -- CHAPTER 22. SL(n) Examples with Slightly Composite n -- CHAPTER 23. Other SL(n) Examples -- CHAPTER 24. An O(2n) Example -- CHAPTER 25. G2 Examples: the Overall Strategy -- CHAPTER 26. G2 Examples: Construction in Characteristic Two -- CHAPTER 27. G2 Examples: Construction in Odd Characteristic -- CHAPTER 28. The Situation over ℤ: Results -- CHAPTER 29. The Situation over ℤ: Questions -- CHAPTER 30. Appendix: Deligne's Fibre Functor -- Bibliography -- Index |
Sommario/riassunto: | Convolution and Equidistribution explores an important aspect of number theory--the theory of exponential sums over finite fields and their Mellin transforms--from a new, categorical point of view. The book presents fundamentally important results and a plethora of examples, opening up new directions in the subject. The finite-field Mellin transform (of a function on the multiplicative group of a finite field) is defined by summing that function against variable multiplicative characters. The basic question considered in the book is how the values of the Mellin transform are distributed (in a probabilistic sense), in cases where the input function is suitably algebro-geometric. This question is answered by the book's main theorem, using a mixture of geometric, categorical, and group-theoretic methods. By providing a new framework for studying Mellin transforms over finite fields, this book opens up a new way for researchers to further explore the subject. |
Titolo autorizzato: | Convolution and equidistribution |
ISBN: | 1-283-37996-1 |
9786613379962 | |
1-4008-4270-0 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910824873803321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |