Vai al contenuto principale della pagina

Approximation methods for efficient learning of Bayesian networks / / Carsten Riggelsen



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Riggelsen Carsten Visualizza persona
Titolo: Approximation methods for efficient learning of Bayesian networks / / Carsten Riggelsen Visualizza cluster
Pubblicazione: Amsterdam ; ; Washington, DC, : IOS Press, c2008
Edizione: 1st ed.
Descrizione fisica: 1 online resource (148 p.)
Disciplina: 519.5
519.5/42
Soggetto topico: Bayesian statistical decision theory
Machine learning
Neural networks (Computer science)
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references (p. [133]-137).
Nota di contenuto: Title page; Contents; Foreword; Introduction; Preliminaries; Learning Bayesian Networks from Data; Monte Carlo Methods and MCMC Simulation; Learning from Incomplete Data; Conclusion; References
Sommario/riassunto: This publication offers and investigates efficient Monte Carlo simulation methods in order to realize a Bayesian approach to approximate learning of Bayesian networks from both complete and incomplete data. For large amounts of incomplete data when Monte Carlo methods are inefficient, approximations are implemented, such that learning remains feasible, albeit non-Bayesian. The topics discussed are: basic concepts about probabilities, graph theory and conditional independence; Bayesian network learning from data; Monte Carlo simulation techniques; and, the concept of incomplete data. In order t
Titolo autorizzato: Approximation methods for efficient learning of Bayesian networks  Visualizza cluster
ISBN: 6611733337
1-281-73333-4
9786611733339
1-60750-298-4
600-00-0346-3
1-4337-1131-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910822048103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Frontiers in artificial intelligence and applications. . -Dissertations in artificial intelligence. Frontiers in artificial intelligence and applications ; ; v. 168.