Vai al contenuto principale della pagina

Axiomatic stable homotopy theory / / Mark Hovey, John H. Palmieri, Neil P. Strickland



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Hovey Mark <1965-> Visualizza persona
Titolo: Axiomatic stable homotopy theory / / Mark Hovey, John H. Palmieri, Neil P. Strickland Visualizza cluster
Pubblicazione: Providence, Rhode Island : , : American Mathematical Society, , [1997]
©1997
Descrizione fisica: 1 online resource (130 p.)
Disciplina: 510 s
514/.24
Soggetto topico: Homotopy theory
Persona (resp. second.): PalmieriJohn H <1964-> (John Harold)
StricklandNeil P. <1966->
Note generali: "July 1997, volume 128, number 610 (second of 4 numbers)."
Nota di bibliografia: Includes bibliographical references (pages 109-111) and index.
Nota di contenuto: ""Contents""; ""1. Introduction and definitions""; ""1.1. The axioms""; ""1.2. Examples""; ""1.3. Multigrading""; ""1.4. Some basic definitions and results""; ""2. Smallness, limits and constructibility""; ""2.1. Notions of finiteness""; ""2.2. Weak colimits and limits""; ""2.3. Cellular towers and constructibility""; ""3. Bousfield localization""; ""3.1. Localization and colocalization functors""; ""3.2. Existence of localization functors""; ""3.3. Smashing and finite localizations""; ""3.4. Geometric morphisms""; ""3.5. Properties of localized subcategories""; ""3.6. The Bousfield lattice""
""3.7. Rings, fields and minimal Bousfield classes""""3.8. Bousfield classes of smashing localizations""; ""4. Brown representability""; ""4.1. Brown categories""; ""4.2. Minimal weak colimits""; ""4.3. Smashing localizations of Brown categories""; ""4.4. A topology on [X, Y]""; ""5. Nilpotence and thick subcategories""; ""5.1. A naive nilpotence theorem""; ""5.2. A thick subcategory theorem""; ""6. Noetherian stable homotopy categories""; ""6.1. Monochromatic subcategories""; ""6.2. Thick subcategories""; ""6.3. Localizing subcategories""; ""7. Connective stable homotopy theory""
""8. Semisimple stable homotopy theory""""9. Examples of stable homotopy categories""; ""9.1. A general method""; ""9.2. Chain complexes""; ""9.3. he derived category of a ring""; ""9.4. Homotopy categories of equivariant spectra""; ""9.5. Cochain complexes of B�comodules""; ""9.6. The stable category of B�modules""; ""10. Future directions""; ""10.1. Grading systems on stable homotopy categories""; ""10.2. Other examples""; ""Appendix A. Background from category theory""; ""A.1. Triangulated categories""; ""A.2. Closed symmetric monoidal categories""; ""References""; ""Index""
Titolo autorizzato: Axiomatic stable homotopy theory  Visualizza cluster
ISBN: 1-4704-0195-9
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910811888703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Memoirs of the American Mathematical Society ; ; no. 610.