Vai al contenuto principale della pagina
| Autore: |
Yuan Xinyi <1981->
|
| Titolo: |
The Gross-Zagier formula on Shimura curves [[electronic resource] /] / Xinyi Yuan, Shou-wu Zhang, and Wei Zhang
|
| Pubblicazione: | Princeton, : Princeton University Press, 2012, c2013 |
| Edizione: | Course Book |
| Descrizione fisica: | 1 online resource (267 p.) |
| Disciplina: | 516.3/52 |
| Soggetto topico: | Shimura varieties |
| Arithmetical algebraic geometry | |
| Automorphic forms | |
| Quaternions | |
| Soggetto non controllato: | Arakelov theory |
| Benedict Gross | |
| Don Zagier | |
| EichlerГhimura theory | |
| Eisenstein series | |
| GrossКagier formula | |
| Heegner point | |
| Hodge bundle | |
| Hodge index theorem | |
| L-series | |
| MordellЗeil group | |
| NeronДate height | |
| RankinГelberg L-function | |
| Schwartz function | |
| Shimizu lifting | |
| Shimura curve | |
| Shimura curves | |
| SiegelЗeil formula | |
| Waldspurger formula | |
| Weil representation | |
| abelian varieties | |
| analytic kernel function | |
| analytic kernel | |
| degenerate Schwartz function | |
| discrete series | |
| generating series | |
| geometric kernel | |
| height series | |
| holomorphic kernel function | |
| holomorphic projection | |
| incoherent Eisenstein series | |
| incoherent automorphic representation | |
| incoherent quaternion algebra | |
| kernel function | |
| kernel identity | |
| local height | |
| modular curve | |
| modularity | |
| multiplicity function | |
| non-archimedean local field | |
| non-degenerate quadratic space | |
| ordinary component | |
| orthogonal space | |
| projector | |
| pull-back formula | |
| ramified quadratic extension | |
| supersingular component | |
| superspecial component | |
| theta function | |
| theta liftings | |
| theta series | |
| trace identity | |
| un-normalized kernel function | |
| unramified quadratic extension | |
| Altri autori: |
ZhangShouwu
ZhangWei <1981->
|
| Note generali: | Description based upon print version of record. |
| Nota di bibliografia: | Includes bibliographical references and index. |
| Nota di contenuto: | Frontmatter -- Contents -- Preface -- Chapter One. Introduction and Statement of Main Results -- Chapter Two. Weil Representation and Waldspurger Formula -- Chapter Three. Mordell-Weil Groups and Generating Series -- Chapter Four. Trace of the Generating Series -- Chapter Five. Assumptions on the Schwartz Function -- Chapter Six. Derivative of the Analytic Kernel -- Chapter Seven. Decomposition of the Geometric Kernel -- Chapter Eight. Local Heights of CM Points -- Bibliography -- Index |
| Sommario/riassunto: | This comprehensive account of the Gross-Zagier formula on Shimura curves over totally real fields relates the heights of Heegner points on abelian varieties to the derivatives of L-series. The formula will have new applications for the Birch and Swinnerton-Dyer conjecture and Diophantine equations. The book begins with a conceptual formulation of the Gross-Zagier formula in terms of incoherent quaternion algebras and incoherent automorphic representations with rational coefficients attached naturally to abelian varieties parametrized by Shimura curves. This is followed by a complete proof of its coherent analogue: the Waldspurger formula, which relates the periods of integrals and the special values of L-series by means of Weil representations. The Gross-Zagier formula is then reformulated in terms of incoherent Weil representations and Kudla's generating series. Using Arakelov theory and the modularity of Kudla's generating series, the proof of the Gross-Zagier formula is reduced to local formulas. The Gross-Zagier Formula on Shimura Curves will be of great use to students wishing to enter this area and to those already working in it. |
| Titolo autorizzato: | The Gross-Zagier formula on Shimura curves ![]() |
| ISBN: | 9786613883919 |
| 1-4008-4564-5 | |
| 1-283-57146-3 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910790961403321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |