Vai al contenuto principale della pagina
Autore: | Ōshika Kenʼichi <1961-> |
Titolo: | Kleinian groups which are limits of geometrically finile groups / / Ken© ichi Ohshika |
Pubblicazione: | Providence, Rhode Island : , : American Mathematical Society, , 2005 |
Descrizione fisica: | 1 online resource (136 p.) |
Disciplina: | 510 s |
514/.22 | |
Soggetto topico: | Kleinian groups |
Low-dimensional topology | |
Geometry, Hyperbolic | |
Note generali: | "September 2005, volume 177, number 834 (second of 4 numbers)." |
Nota di bibliografia: | Includes bibliographical references (pages 111-113) and index. |
Nota di contenuto: | ""Contents""; ""Abstract""; ""Introduction""; ""Chapter 1. Preliminaries""; ""1.A. Generalities""; ""1.B. Compact cores, ends of hyperbolic 3-manifolds""; ""1.C. Geodesic and measured laminations""; ""1.D. Masur domain""; ""1.E. Pleated surfaces""; ""1.F. Train tracks""; ""1.G. Algebraic and geometric convergence""; ""Chapter 2. Statements of theorems""; ""Chapter 3. Characteristic compression bodies""; ""Chapter 4. The Masur domain and Ahlfors' conjecture""; ""4.A. The main result in this chapter"" |
""4.B. Realization by pleated surfaces for measured laminations on the exterior boundaries of compression bodies""""4.C. Approximation by train tracks""; ""4.D. Realization by pleated surfaces""; ""4.E. A product neighbourhood of the end""; ""Chapter 5. Branched covers and geometric limit""; ""Chapter 6. Non-realizable measured laminations""; ""Chapter 7. Strong convergence of function groups""; ""Chapter 8. Proof of the main theorem""; ""8.A. A special case""; ""8.B. The existence of a homeomorphism""; ""8.C. Lemmata for the proof of Lemma 8.2"" | |
""8.D. Proof of Lemma 8.2 and Proposition 8.1""""8.E. Concluding the proof of Theorem 2.1""; ""Bibliography""; ""Index""; ""A""; ""B""; ""C""; ""E""; ""G""; ""I""; ""K""; ""L""; ""M""; ""P""; ""Q""; ""R""; ""S""; ""T""; ""U""; ""V""; ""W"" | |
Titolo autorizzato: | Kleinian groups which are limits of geometrically finile groups |
ISBN: | 1-4704-0435-4 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910788749703321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |