Vai al contenuto principale della pagina

Pseudocapacitors : Fundamentals to High Performance Energy Storage Devices / / edited by Ram K. Gupta



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Pseudocapacitors : Fundamentals to High Performance Energy Storage Devices / / edited by Ram K. Gupta Visualizza cluster
Pubblicazione: Cham, Switzerland : , : Springer, , [2024]
©2024
Edizione: First edition.
Descrizione fisica: 1 online resource (403 pages)
Disciplina: 621.315
Soggetto topico: Capacitors - Design and construction
Capacitors - Materials
Persona (resp. second.): GuptaRam K.
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Intro -- Preface -- Contents -- Pseudocapacitance: An Introduction -- 1 Introduction -- 2 Classification -- 2.1 Electric Double-Layer Capacitors (EDLCs) -- 2.2 Pseudocapacitors (PC) -- 2.3 Hybrid Supercapacitor -- 3 Conclusion -- References -- Pseudocapacitance: Fundamentals to Advanced Applications -- 1 Introduction -- 2 Background -- 3 Types of Energy Storage Devices -- 4 Role of Pseudocapacitive Materials -- 5 Types of Pseudocapacitive Mechanisms -- 6 Electrochemical Features of Pseudocapacitance -- 7 Pseudocapacitive Electrode Architectures -- 8 Various Materials of Energy Storage Devices -- 8.1 Aqueous Pseudocapacitor Materials -- 8.2 Emergence of Pseudocapacitance in RuO2 -- 8.3 Non-aqueous Electrolyte Pseudo Capacitor Materials -- 9 Conclusions -- References -- Pseudocapacitance: Mechanism and Characteristics -- 1 Introduction -- 2 Capacitance and Pseudocapacitance in the Electrode-Electrolyte Interface -- 3 Pseudocapacitance Charge Transfer Mechanisms -- 3.1 Under-Potential Deposition -- 3.2 Surface Redox Pseudocapacitance -- 3.3 Intercalation Pseudocapacitance -- 4 Origin of Pseudocapacitance -- 5 Intrinsic and Extrinsic Pseudocapacitance -- 6 Electrochemical Features of Pseudocapacitance -- 6.1 CV and GCD Characteristics -- 6.2 Electrochemical Impedance Spectroscopy Characteristics -- 7 Evaluation Parameters: Specific Capacitance and Specific Capacity -- 8 Understanding the Transition Region, Capacitive and Diffusive Contribution in Pseudocapacitors -- 9 Conclusion -- References -- Emerging Pseudocapaciting Materials -- 1 Introduction -- 2 Pseudocapaciting Materials Developed Based on the Glycerate Template Method -- 2.1 Glycerate Template Method -- 2.2 Emerging Progress with the Glycerate Template Approach -- 3 Composite Pseudocapaciting Materials Consisting of Nanosheets and/or Nanoplates.
4 Negative Electrode Pseudocapaciting Materials -- 4.1 Metal Sulfides for Negative Electrode Pseudocapaciting Materials -- 4.2 Metal Nitrides for Negative Electrode Pseudocapaciting Materials -- 4.3 Hydroxide/LDH for Negative Electrode Pseudocapaciting Materials -- 4.4 Conducting Polymers, Metal Oxides, and MXenes for Negative Electrode Pseudocapaciting Materials -- 5 Other Emerging Pseudocapaciting Materials -- 6 Conclusion -- References -- Pseudocapacitance: Tuning Electrochemical Properties -- 1 Introduction -- 2 Tuning Strategies for Intrinsic Pseudocapacitive Materials -- 3 Tuning Strategies for Extrinsic Pseudocapacitive Materials -- 3.1 Nanostructuring -- 3.2 Defect Engineering -- 3.3 Interlayer Engineering -- 3.4 Heterostructure Engineering -- 4 Conclusion and Perspectives -- References -- Pseudocapacitive Materials for Electrolytes -- 1 Introduction to Pseudocapacitive Materials for Electrolytes -- 2 Types of Electrolytes for Energy Applications -- 2.1 Aqueous Electrolytes -- 2.2 Non-aqueous Electrolytes (Organic, Ceramic, and Ionic Liquid-Based) -- 2.3 Gel Polymer Electrolytes (GPEs) -- 2.4 Solid Polymer Electrolytes (SPEs) -- 3 Metal-Free Pseudocapacitive Materials for Electrolytes -- 3.1 Carbon-Derived Pseudocapacitive Materials -- 3.2 Conductive Polymers Pseudocapacitive Materials -- 4 Metal-Derived Pseudocapacitive Materials for Electrolytes -- 4.1 Metal Oxides (MOs) and Mixtures of Transition Metal Oxides (MTMOs) -- 4.2 Chalcogenides and MXenes Pseudocapacitive Materials -- 4.3 Metal-Organic Frameworks Pseudocapacitive Materials -- 5 Conclusions -- 6 Challenges and Future Directions in Pseudocapacitive Materials for Energy Applications -- References -- Electrochemical Properties of Metal Hydroxides -- 1 Introduction -- 2 Nickel Hydroxides -- 3 Manganese Hydroxides -- 4 Cobalt Hydroxides -- 5 Doped Metal Hydroxides.
6 The Competition Between Morphology and Chemical Doping -- 7 Metal Hydroxide Composites -- 7.1 Bimetallic Hydroxide Composites -- 7.2 Ternary Metal Hydroxide Composites -- 8 Layered Double Hydroxides (LDHs) -- 8.1 Aluminum Based LDHs -- 8.2 Modification of LDHs -- References -- Pseudocapacitance in Double Perovskite Material -- 1 Introduction -- 1.1 Advances in Double Perovskite Materials -- 1.2 Synthesis Approaches of DPMs -- 2 Electrochemistry of DPMs -- 2.1 Charge Storage Mechanism -- 2.2 Electrochemical Stability and Reversibility -- 2.3 Electrochemical Kinetics -- 2.4 Cation Leaching Assessing -- 3 DPMs as Pseudocapacitive Electrodes -- 3.1 Double Perovskite Material as Electrode Materials -- 3.2 Challenges and Future Perspectives -- 4 Conclusions -- References -- Conducting Polymers for Pseudocapacitors -- 1 Introduction -- 2 Types of Pseudocapacitance -- 2.1 Adsorption Pseudocapacitance -- 2.2 Redox Pseudocapacitance -- 2.3 Intercalation Pseudocapactiance -- 2.4 Electrochemical Capacitors -- 3 Polymeric Materials -- 4 Polymeric Carbon-Based Materials -- 5 Polymeric Composite Materials -- 6 Conclusion and Future Perspective -- References -- MXenes for Pseudocapacitors -- 1 Introduction -- 2 Charge Storage and Kinematics in MXene -- 3 Pseudocapacitive Asymmetric Devices -- 4 Intercalated Pseudocapacitor -- 4.1 Aqueous System -- 4.2 Non-Aqueous System -- 5 Strategies to Tune the Interlayer Spacing -- 6 Interlayer Spacing of MXene in Pesudocapacitor -- 7 Composites and Hybrid Structures of MXene -- 8 Summery and Future Prospective -- References -- MXenes-Based Composites for Pseudocapacitors -- 1 Introduction -- 2 MXenes Based Composites for Pseudocapacitors -- 2.1 MXenes/Metal Compound Composites -- 2.2 MXenes/polymer Composites -- 2.3 MXenes Based Other Composites -- 3 Summary -- References -- Hydrogel and Its Composites for Pseudocapacitors.
1 Introduction -- 2 Fundamentals of Pseudocapacitors -- 3 Hydrogel and Composites -- 4 Hydrogel and Composites for Pseudocapacitors -- 5 Conclusion -- References -- Pseudocapacitive Materials for 3D Printed Supercapacitors -- 1 Introduction -- 2 3D Printing Technologies -- 2.1 Fused Deposition Modeling -- 2.2 Stereolithography -- 2.3 Selective Laser Sintering -- 2.4 Digital Light Processing -- 2.5 Binder Jetting -- 2.6 Direct Ink Writing -- 2.7 Inkjet Printing -- 3 Electrode Design and Architectures -- 3.1 Interdigitated Structures -- 3.2 Vertically Aligned Structures -- 3.3 Complex 3D Structures -- 4 Pseudocapacitive Materials-Based 3D Printed Supercapacitors -- 4.1 Transition Metal Oxides -- 4.2 Conducting Polymers -- 4.3 Metal Dichalcogenides -- 4.4 Transition Metal Carbides/carbonitrides (MXenes) -- 4.5 Metal-organic Frameworks -- 4.6 Hybrid Electrode Combination -- 5 Implications and Future Perspectives -- References -- Pseudocapacitive Materials for Flexible Supercapacitors -- 1 Introduction -- 2 Pseudocapacitive Materials for FSCs -- 2.1 Metal Oxides and Their Composites for FSCs -- 2.2 Conducting Polymers and Their Composites for FSCs -- 2.3 Mxenes and Their Composites for FSCs -- 3 Device Configurations of Pseudocapacitive Material-Incorporated FSCs -- 3.1 One-Dimensional Fiber-Shaped FSCs -- 3.2 Two-Dimensional Film-Shaped FSCs -- 3.3 Three-Dimensional Structural FSCs -- 4 Practical Applications of Pseudocapacitive Material Incorporated FSCs -- 5 Summary and Outlooks -- References -- Redox-Active Polymers for Batteries -- 1 Introduction -- 2 Redox-Active Polymers -- 2.1 Classification of Redox-Active Polymers -- 3 Effects of Polymer Architecture on Cell Properties -- 4 Concepts of Electron Transfer in RAPs -- 5 Redox- Active Polymers for Batteries -- 5.1 Development of Polymer-Based Aqueous RFB.
5.2 Development of Polymer-Based Nonaqueous RFB -- 5.3 Polymer Suspension-Based RFB -- 6 Conclusions -- References -- Carbon-Based Pseudocapacitive Materials for Next Generation Batteries -- 1 Introduction -- 2 Carbon-Based Materials -- 2.1 Carbon Nanotubes (CNTs) -- 2.2 Carbon Nanofibers (CNFs) -- 2.3 Graphene -- 2.4 Graphite -- 3 Metal-Based Materials -- 3.1 Metal Oxides -- 3.2 Metal Sulfides -- 4 Metal-Carbon Composites -- 4.1 Metal Oxide/Sulfide with CNT Composites -- 4.2 Metal Oxide/Sulfide with CNF Composites -- 4.3 Metal Oxide/Sulfide with Graphene/Graphite Composites -- 5 Conclusion and Perspective -- References -- Surfactant-Assisted Pseudocapacitive Materials for Li-Ion Batteries -- 1 Introduction -- 2 Properties and Advantages of Surfactants in Active Materials of LIBs -- 3 Synthesis Methods of Surfactant-Assisted Pseudocapacitive Materials -- 3.1 Solvothermal Methods -- 3.2 Hydrothermal Methods -- 3.3 Sol-gel Methods -- 3.4 Solid-State Methods -- 4 Structural Morphologies of Surfactant-Assisted Psedocapacitive Materials -- 4.1 Rod-Like Structures -- 4.2 Plate-Like Structures -- 4.3 Spherical-Like Structures -- 5 Conclusion -- References -- Pseudocapacitive Materials for Metal-Sulfur Batteries -- 1 Introduction -- 2 Metal-Sulfur Batteries -- 3 Pseudocapacitive Materials -- 3.1 Transition Metal Oxides/Hydroxides -- 3.2 Transition Metal Chalcogenides (TMCs) -- 3.3 Transition Metal Phosphides/Borides -- 3.4 Conducting Polymers -- 3.5 MXenes (Nitrides and Carbides) -- 3.6 MOF-Derived Materials -- 4 Conclusion and Future Perspective -- References -- Pseudocapacitive Materials for Metal-Air Batteries -- 1 Introduction -- 2 Metal-Air Batteries: Fundamentals and Working -- 3 MAB Using Pseudocapacitive Materials -- 3.1 Transition Metal Oxides/Sulfides/Phosphide -- 3.2 Conducting Polymers -- 3.3 Composites -- 4 Flexible Metal-Air Batteries.
5 Conclusion and Future Remark.
Titolo autorizzato: Pseudocapacitors  Visualizza cluster
ISBN: 3-031-45430-8
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910768181603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Engineering materials.