Vai al contenuto principale della pagina

Oxide electronics / / editor, Asim Ray



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Oxide electronics / / editor, Asim Ray Visualizza cluster
Pubblicazione: Hoboken, NJ : , : Wiley, , [2021]
©2021
Descrizione fisica: 1 online resource (627 pages)
Disciplina: 621.3810284
Soggetto topico: Oxides - Electric properties
Metallic oxides
Electronics - Materials
Persona (resp. second.): RayAsim K.
Note generali: Includes index.
Nota di contenuto: Cover -- Title Page -- Copyright -- Contents -- Series Preface -- Preface -- List of Contributors -- Chapter 1 Graphene Oxide for Electronics -- 1.1 Introduction -- 1.2 Synthesis and Characterizations of Graphene Oxide -- 1.2.1 Chemical Reduction of Graphene Oxide (GO) -- 1.2.2 Microwave Method -- 1.2.3 Plasma Method -- 1.2.4 Laser Method -- 1.3 Energy Harvest Applications of Graphene Oxide -- 1.3.1 Solar Cells -- 1.3.2 Solar Thermal Energy Harvest Devices -- 1.4 Energy Storage Applications of Graphene Oxide -- 1.4.1 Supercapacitors -- 1.4.2 Batteries -- 1.5 Electronic Device Applications of Graphene Oxide -- 1.6 Large Area Electronics Applications of Graphene Oxide -- References -- Chapter 2 Flexible and Wearable Graphene‐Based E‐Textiles -- 2.1 Introduction to Wearable E‐Textiles -- 2.2 Synthesis of Graphene Derivatives -- 2.2.1 Graphene Oxide -- 2.2.2 Reduced Graphene Oxide -- 2.3 Graphene‐Based Wearable E‐Textiles -- 2.3.1 Graphene‐Based Textile Fibres -- 2.3.2 Graphene‐Coated Textiles -- 2.3.3 Graphene‐Printed Wearable E‐Textiles -- 2.3.3.1 Screen Printing -- 2.3.3.2 Inkjet Printing -- 2.4 Surface Pre‐ and Post‐Treatment of Substrates -- 2.5 Applications -- 2.5.1 Sensors -- 2.5.2 Supercapacitor -- 2.5.3 Rechargeable Batteries -- 2.5.4 Optoelectronics -- 2.6 Challenges and Outlook -- References -- Chapter 3 Magnetic Interactions in the Cubic Mott Insulators NiO, MnO, and CoO and the Related Oxides CuO and FeO -- 3.1 Introduction -- 3.2 Spin-Spin Interactions -- 3.2.1 Magnetic Ordering Below TN -- 3.2.2 Magnetostriction -- 3.2.3 Magnetic and Electronic Excitations -- 3.3 Spin-Phonon Interactions -- 3.3.1 Phonon and Magnon Temperature Dependences -- 3.3.2 Phonon Mode Splitting Below TN -- 3.4 Other Related Materials -- 3.4.1 Cupric Oxide -- 3.4.2 Iron Monoxide -- 3.5 Conclusions -- Acknowledgments -- References.
Chapter 4 High‐κ Dielectric Oxides for Electronics -- 4.1 Introduction of High‐κ Dielectric Oxides -- 4.1.1 Group IIIA Dielectric Oxides -- 4.1.2 Group IIIB High‐κ Dielectric Oxides -- 4.1.3 Group IVB High‐κ Dielectric Oxides -- 4.2 The Deposition of High‐κ Oxide Dielectrics -- 4.3 High‐κ Dielectric Oxides for Field‐Effect Transistors -- 4.3.1 High‐κ Dielectric Oxides for the MOSFETs -- 4.3.2 High‐κ Dielectric Oxides for Tunnel Field‐Effect Transistors -- 4.4 High‐κ Dielectric Oxides for Memory Devices -- 4.4.1 High‐κ Dielectric Oxides for DRAM -- 4.4.2 High‐κ Dielectric Oxides for ReRAM -- References -- Chapter 5 Low Temperature Growth of Germanium Oxide Nanowires by Template Based Self Assembly and their Raman Characterization -- 5.1 Introduction -- 5.2 Synthesis -- 5.3 Characterization -- 5.4 Raman Measurements -- 5.5 Conclusion -- References -- Chapter 6 Electronic Phenomena, Electroforming, Resistive Switching, and Defect Conduction Bands in Metal‐Insulator‐Metal Diodes -- 6.1 Introduction -- 6.2 Experimental -- 6.3 Electroforming, Electroluminescence, and Electron Emission -- 6.3.1 Electroforming of Al‐Al2O3‐Ag Diodes -- 6.3.2 Electroluminescence from Al‐Al2O3‐Ag Diodes -- 6.3.3 Electron Emission from Al‐Al2O3‐Ag Diodes -- 6.3.4 VCNR, EL, and EM in Other Insulators -- 6.3.5 Temperature Dependence of EM -- 6.4 Electrode Effects in Resistive Switching of Nb‐Nb2O5‐Metal Diodes -- 6.4.1 Resistive Switching in Nb‐Nb2O5‐Metal Diodes -- 6.4.2 Resistive Switching at Low Temperatures -- 6.4.3 Structure in I‐V Curves of Electroformed Nb‐Nb2O5‐Metal Diodes -- 6.5 Conduction, Electroluminescence, and Photoconductivity Before Electroforming MIM Diodes -- 6.5.1 Conduction in Nb‐Nb2O5‐Au Diodes -- 6.5.2 Electroluminescence in Nb‐Nb2O5‐Au Diodes -- 6.5.3 Conduction and Electroluminescence in MIM Diodes with TiO2 and Ta2O5.
6.5.4 Photoconductivity in MIM Diodes -- 6.6 Discussion -- 6.6.1 Defect Conduction Bands in Amorphous Al2O3 -- 6.6.2 Defect Conduction Bands in Amorphous Nb2O5 -- 6.6.3 Defect Conduction Bands in Amorphous Insulators -- 6.7 Summary and Conclusions -- References -- Chapter 7 Lead Oxide as Material of Choice for Direct Conversion Detectors -- 7.1 Introduction -- 7.2 Crystal Structure and Electronic Properties of PbO -- 7.2.1 Crystal Structure of Tetragonal PbO (α‐PbO) -- 7.2.2 Crystal Structure of Orthorhombic PbO (β‐PbO) -- 7.2.3 Electronic Properties of α‐ and β‐PbO -- 7.3 Deposition Process of PbO Layers -- 7.4 Charge Transport Mechanism in Lead Oxide -- 7.4.1 Electron Transport in poly‐PbO -- References -- Chapter 8 ZnO Varistors: From Grain Boundaries to Power Applications -- 8.1 Introduction -- 8.2 Manufacturing Process of ZnO Varistors -- 8.3 Microstructure and Grain Boundaries -- 8.4 Grain Boundary Potential Barriers -- 8.5 The 'Double Schottky Barrier Defect Model' -- 8.6 Hot Electron Effects Controlling the Breakdown Region -- 8.7 Hot Electron Effects and Dynamic Response -- 8.8 From Single Grain Boundaries to Microstructures and Varistor Devices -- 8.9 Ageing and Long‐Term Stability of Varistor Materials -- 8.10 Energy Absorption Capability and High Current Impulse Stresses -- 8.11 Summary and Outlook -- Acknowledgements -- References -- Chapter 9 Fundamental Properties and Power Electronic Device Progress of Gallium Oxide -- 9.1 Introduction -- 9.2 Electronic Properties and Defects of Ga2O3 -- 9.2.1 Bulk Crystals, Epitaxy, and n-type Doping -- 9.2.2 Electronic Band Structure and Feasibility of p-type Doping -- 9.2.3 Defect Behaviour in Bulk Crystals and Epitaxial Films -- 9.3 Basic Device Characteristics -- 9.3.1 Metal‐Semiconductor Contact -- 9.3.1.1 Barrier Formation -- 9.3.1.2 Image‐Force Lowering.
9.3.1.3 Carrier Transport and Breakdown -- 9.3.2 Physics of Deep Depletion Ga2O3 MOSFETs -- 9.3.2.1 Metal‐Insulator‐Semiconductor Capacitors -- 9.3.2.2 Basic Device Characteristics of Depletion Mode MOSFETs Based on Ga2O3 -- 9.3.2.3 Approaches to Enhancement‐Mode β‐Ga2O3 MOSFETs -- 9.3.3 Relevant Figure of Merit in Ga2O3 -- 9.4 Ga2O3 Schottky Rectifiers -- 9.4.1 Edge Terminations -- 9.4.2 Ga2O3 Schottky Rectifiers -- 9.4.3 Ga2O3 p‐n Heterojunction Diodes -- 9.5 Ga2O3 Transistors -- 9.5.1 Ohmic Contacts to Ga2O3 -- 9.5.2 Dielectric Materials for Ga2O3 and MOSCaps -- 9.5.3 Lateral Ga2O3 FETs -- 9.5.4 β‐Ga2O3 MODFETs -- 9.5.5 Vertical Ga2O3 MOSFETs -- 9.6 Summary -- References -- Chapter 10 Emerging Trends, Challenges, and Applications in Solid‐State Laser Cooling -- 10.1 Introduction -- 10.2 Theory -- 10.3 Experimental Design Considerations for Cooling -- 10.3.1 Experimental Setups Used for Solid‐state Laser Cooling -- 10.3.1.1 Crystals -- 10.3.1.2 Glasses -- 10.3.1.3 Silica Glass Optical Fibres -- 10.3.1.4 Semiconductor Nanoribbons -- 10.3.2 Techniques to Analyse Background Absorption (αb) Coefficient -- 10.3.3 Temperature Measurement Techniques in Solid‐State Laser Cooling -- 10.3.3.1 Thermal Imaging -- 10.3.3.2 Photoluminescence (PL) Thermometry -- 10.3.3.3 Temperature Measurement Using Fibre Bragg Gratings -- 10.3.3.4 Thermocouples -- 10.3.3.5 Photothermal Deflection Spectroscopy (PTDS) -- 10.3.3.6 Interferometric Technique -- 10.4 Laser Cooling Materials and Properties -- 10.4.1 Crystals -- 10.4.2 Semiconductors -- 10.4.3 Optical Fibres -- 10.4.4 Nanocrystalline Powders -- 10.5 Oxyfluoride Glass‐Ceramics: Recent Developments in Solid‐State Laser Cooling -- 10.5.1 Earth‐Doped Oxyfluoride Pseudo‐Binary Glasses and Glass‐Ceramics for Optical Refrigeration -- 10.5.1.1 Materials and Methods -- 10.5.1.2 Results and Discussion.
10.5.1.3 Summary on Pseudo‐Binary Oxyfluoride Glass Ceramics -- 10.6 Optical Cryocooler Devices -- 10.7 Future Prospects and Conclusions -- Acknowledgements -- References -- Chapter 11 Electrode Materials for Sodium Ion Rechargeable Batteries -- 11.1 Introduction - Review of the Constituents Used in Na - Ion Cells -- 11.2 Cathode Materials for Na Ion Rechargeable Cells -- 11.2.1 Transition Metal Oxides with Layered Structure -- 11.2.2 Prussian Blue Analogue -- 11.2.3 Sodium Superionic Conductors (NASICON) -- 11.2.4 Other Cathodes -- 11.3 Current Collectors, Binder, and Electrolyte -- 11.4 Anode Materials for Na Ion Rechargeable Cells -- 11.4.1 Carbonaceous Materials -- 11.4.2 Alloying Type Anodes -- 11.4.3 Conversion Type Anodes -- 11.4.4 Other Anodes -- 11.5 Outstanding Research Issues and Statement of the Problem -- 11.6 Synthesis and Electrochemical Characterization of Electrodes -- 11.6.1 Ilmenite NiTiO3 as Anode -- 11.6.1.1 Synthesis and Characterization -- 11.6.2 Electrochemical Characterization -- 11.6.3 Electrophoretic Deposition of NiTiO3‐Based Anode -- 11.6.4 Electrochemical Performance of EPD Grown NTO Anodes -- 11.7 Na2Ti3O7 as Anode -- 11.7.1 Synthesis and Characterization -- 11.7.2 Electrochemical Characterization of Pristine NaTO -- 11.7.3 Electrochemical Performance of Carbon‐Coated NaTO Anode -- 11.7.4 Electrochemical Performance of NaTO/rGO Composite Anode -- 11.8 PBA as Cathode -- 11.8.1 Nickel Hexacyanoferrate (NiHCF) -- 11.8.2 Iron Hexacyanoferrate (FeHCF) -- 11.9 Summary and Conclusions -- Acknowledgement -- References -- Chapter 12 Perovskites for Photovoltaics -- 12.1 Introduction -- 12.2 Diffusion Length -- 12.2.1 Methodology -- 12.2.2 Results of Simulated Diffusion Length and Discussions -- 12.3 Open‐Circuit Voltage -- 12.3.1 Results of Open‐Circuit Voltage and Discussions -- 12.3.2 Bimolecular Recombination.
12.4 Influence of Density of Tail States at Interfaces.
Titolo autorizzato: Oxide electronics  Visualizza cluster
ISBN: 1-119-52950-6
1-119-52948-4
1-119-52953-0
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910677933603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Wiley series in materials for electronic and optoelectronic applications