Vai al contenuto principale della pagina

Resilient power electronic systems / / Shahriyar Kaboli, Saeed Peyghami, Frede Blaabjerg



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Kaboli Shahriyar <1975-> Visualizza persona
Titolo: Resilient power electronic systems / / Shahriyar Kaboli, Saeed Peyghami, Frede Blaabjerg Visualizza cluster
Pubblicazione: Hoboken, New Jersey ; ; Chichester, West Sussex : , : Wiley, , [2022]
©2022
Descrizione fisica: 1 online resource (387 pages)
Disciplina: 621.317
Soggetto topico: Power electronics
Electric current converters
Reliability (Engineering)
Persona (resp. second.): PeyghamiSaeed
BlaabjergFrede
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- About the Companion Website -- Part 1 Resilient Power Electronic Systems -- Chapter 1 Resilient Systems -- 1.1 Introduction -- 1.2 Definition of a System -- 1.2.1 Elements of the System -- 1.2.2 System Performance Criteria -- 1.2.3 System Useful Life and Reliability -- 1.3 Resilience Concept -- 1.3.1 Mission Profile -- 1.3.2 Mission Critical -- 1.4 Faulty Condition in a System -- 1.4.1 Internal Faults -- 1.4.2 External Faults -- 1.4.3 Malfunctioning -- 1.5 System Health Awareness -- 1.5.1 System Condition Monitoring -- 1.5.2 Fault Prognosis -- 1.5.3 Fault Diagnosis -- 1.6 Methods for Resilience -- 1.6.1 Protection -- 1.6.2 Derating -- 1.6.3 Stress Reduction -- 1.6.4 Immunity Against False Data -- 1.7 Inherently Resilient Systems -- 1.8 Summary and Conclusions -- References -- Chapter 2 Mission Critical Power Electronic Systems -- 2.1 Power Electronic Converters -- 2.1.1 Elements of Power Electronics -- 2.1.2 Types of Power Electronic Converters -- 2.1.3 Types of Power Conversion -- 2.1.4 Figure of Merits -- 2.2 Power Electronic Systems -- 2.2.1 Power Electronic-Based Small Grids -- 2.2.2 Power Electronic-Based Power Systems -- 2.3 Applications -- 2.3.1 Power Range -- 2.3.2 Frequency Range -- 2.4 Mission Critical Applications -- 2.4.1 Cost Effects -- 2.4.2 Human Effects -- 2.4.3 Qualification Effects -- 2.5 Summary and Conclusions -- References -- Chapter 3 Resilience in Power Electronics -- 3.1 Faulty Condition in Power Electronic Systems -- 3.1.1 Single Source-Single Converter-Single Load -- 3.1.2 Single Source-Single Converter-Multi Loads -- 3.1.3 Single Source-Multi Individual Converter-Multi Load -- 3.1.4 Multi Individual Source-Multi Individual Converter-Multi Load -- 3.1.5 Multi Source-Multi Converter-Multi Load -- 3.1.6 Single Source-Multi Converter-Multi Load.
3.2 Fault Types -- 3.2.1 Internal Faults -- 3.2.2 External Faults -- 3.2.3 Malfunctioning -- 3.3 Availability -- 3.3.1 Load Supporting During the Fault -- 3.3.2 Acceptable Limits of The Converter Output -- 3.4 Road to Resilience -- 3.4.1 Level of Resilience -- 3.4.2 Time of Applying the Methods -- 3.5 Inherently Resilient Converters -- 3.6 Maintenance Scheduling -- 3.7 Two Case Studies -- 3.7.1 Resilient Converter with a Low System Performance Index Drop -- 3.7.2 Resilient Power Electronic Converter -- 3.8 Summary and Conclusions -- References -- Chapter 4 State of the Art Resilient Power Converters -- 4.1 Mission Critical -- 4.1.1 Mission Critical in Network -- 4.1.2 Mission Critical in Computer Systems -- 4.1.3 Mission Critical in Industry -- 4.1.4 Mission Critical in Devices -- 4.1.5 Mission Critical in Micro Grids -- 4.2 Resilient Systems -- 4.2.1 Resilient Control Systems -- 4.2.2 Resilient Microgrids -- 4.3 Resilient Power Electronic Converters -- 4.3.1 Resilient Multievel Converters -- 4.3.2 Resilient Motor Drive -- 4.3.3 Resilient HVDC Systems -- 4.3.4 Resilient Converters in Space Applications -- 4.3.5 Resilient Multiconverter Systems -- 4.3.6 Resilient Protection Systems -- 4.3.7 Resilient Power Devices -- 4.3.8 Resilient Renewable Energy Systems -- 4.4 Summary and Conclusions -- References -- Part 2 Useful Life of the Power Electronic Systems -- Chapter 5 Useful Life Modeling -- 5.1 Failure Rate -- 5.1.1 Early Failures -- 5.1.2 Random Failures -- 5.1.3 End of Life -- 5.1.4 Effect of Mission Profile -- 5.2 Accelerated Aging Tests -- 5.2.1 Stressors -- 5.2.2 Types of Tests -- 5.2.3 MIL-HDBK-217 -- 5.2.4 FIDES Standard -- 5.3 End of Life Models -- 5.3.1 Empirical Models -- 5.3.2 Physics of Failure Models -- 5.4 Thermomechanical Models -- 5.4.1 Analytical Models -- 5.4.2 Numerical Models -- 5.5 System Life Modeling -- 5.5.1 Markov Tool.
5.5.2 Monte Carlo Tools -- 5.6 Summary and Conclusions -- References -- Chapter 6 Internal Faults: Converter Level -- 6.1 Converter Level Faults -- 6.2 Electrical Considerations -- 6.2.1 Electric Breakdown -- 6.2.2 Creepage -- 6.2.3 Voltage Spikes -- 6.2.4 Partial Discharge -- 6.3 Thermal Considerations -- 6.3.1 Power Loss Characteristics of Active Devices -- 6.4 Mechanical Considerations -- 6.4.1 Mounting Considerations -- 6.4.2 Thermal Considerations -- 6.5 Environmental Considerations -- 6.6 Summary and Conclusions -- References -- Chapter 7 Internal Faults: Element Level -- 7.1 Element Level Faults -- 7.2 Inside the Elements -- 7.2.1 Active Devices -- 7.2.2 Passive Devices -- 7.3 Faults in Active Devices -- 7.3.1 Semiconductor-Related Faults -- 7.3.2 Package-Related Faults -- 7.4 Thermal Cycling -- 7.5 Faults in Passive Devices -- 7.5.1 Faults in Resistors -- 7.5.2 Faults in Capacitors -- 7.5.3 Faults in Magnetic Devices -- 7.6 Summary and Conclusions -- References -- Chapter 8 External Faults -- 8.1 Origins of the External Faults -- 8.1.1 Faults in the Power Source -- 8.1.2 Faults in the Load -- 8.1.3 Faults in the Parasitic Ports -- 8.1.4 Faults in the Non-electrical Paths -- 8.2 Resilience During External Faults -- 8.2.1 External Faults as the Stressors -- 8.2.2 Influence of the Protection System -- 8.3 Types of External Faults -- 8.3.1 Single Events -- 8.3.2 Transient Repetitive Faults -- 8.3.3 Permanent Faults -- 8.4 Fault Clearance -- 8.5 Summary and Conclusions -- References -- Chapter 9 Malfunctioning: Influence of Noise and Disturbance -- 9.1 Electromagnetic Pollution -- 9.2 Description of Electromagnetic Disturbances -- 9.2.1 Classifying Disturbances by Frequency Content -- 9.2.2 Classifying Disturbances by Character -- 9.2.3 Classifying Disturbances by Transmission Mode -- 9.3 EMI in Power Electronic Equipment.
9.3.1 Application of Noise and Ripple in Power Electronic Equipment -- 9.3.2 EMI Issues Caused by Power Electronic Equipment -- 9.3.3 Effect of EMI on the Resilient Operation -- 9.4 Conducted EMI Measurement -- 9.5 Noise Suppression -- 9.5.1 Grounding -- 9.5.2 Shielding -- 9.5.3 Control Techniques for EMC -- 9.6 EMC Standards -- 9.7 Summary and Conclusions -- References -- Part 3 Health Estimation of the Power Electronic Systems -- Chapter 10 Condition Monitoring -- 10.1 Reasons for Condition Monitoring -- 10.1.1 Fault Prognosis -- 10.1.2 Fault Diagnosis -- 10.2 Aims of Condition Monitoring -- 10.2.1 Maintenance Scheduling -- 10.2.2 Derating -- 10.2.3 Operation Management -- 10.3 Methods of Condition Monitoring -- 10.3.1 Sensor-Based Methods -- 10.3.2 Sensor-Less Methods -- 10.4 Detection System -- 10.4.1 Data Acquisition Systems -- 10.4.2 Signal Processing Tools -- 10.4.3 Measurement Tools -- 10.4.4 Isolation -- 10.5 Summary and Conclusions -- References -- Chapter 11 Fault Prognosis -- 11.1 Importance of the Fault Prognosis -- 11.2 Methods of Fault Prognosis -- 11.2.1 Model-Based Fault Prognosis -- 11.2.2 Knowledge-Based Methods -- 11.2.3 Data-Driven Fault Prognosis -- 11.2.4 Fault Prognosis in Power Electronics -- 11.3 Element-Level Internal Faults Prognosis -- 11.3.1 Passive Devices -- 11.3.2 Active Devices -- 11.4 External Faults Prognosis -- 11.5 Summary and Conclusions -- References -- Chapter 12 Fault Diagnosis -- 12.1 Tools and Considerations of Fault Diagnosis -- 12.2 Fault Isolation with Resilience Considerations -- 12.2.1 Definition of the Problem -- 12.2.2 Increasing the Resilience of the Converter -- 12.2.3 Results of Resilient Operation -- 12.3 Post-Fault Analysis -- 12.3.1 Case Study: Crack in Ceramic -- 12.3.2 Melted Part -- 12.4 Summary and Conclusions -- References -- Part 4 Methods of Resilience in Power Electronic Systems.
Chapter 13 Resilience Against Internal Faults -- 13.1 Stress Reduction as a Tool of Resilience -- 13.2 Methods of Stress Reduction -- 13.2.1 Junction Temperature -- 13.2.2 Temperature Swing -- 13.2.3 Electric Field -- 13.2.4 Environmental Factors -- 13.3 Derating -- 13.4 System Derating -- 13.5 Component Derating -- 13.6 Summary and Conclusions -- References -- Chapter 14 Resilience Against External Faults -- 14.1 Resilient Protection System -- 14.1.1 Case Study: Resilient Series Protection Switch -- 14.1.2 Case Study: Resilient Parallel Protection Switch -- 14.2 Electromagnetic Compatibility -- 14.2.1 Grounding -- 14.2.2 Shielding -- 14.3 Application of Artificial Intelligent Methods -- 14.4 Fault Alarm Management -- 14.5 Summary and Conclusions -- References -- Chapter 15 Inherently Resilient Power Electronic Systems -- 15.1 Immune Converter Against the Faults -- 15.2 Elimination of Weak Elements -- 15.3 Reconfigurable Converters -- 15.4 Redundancy -- 15.5 Working Under the Fault Threshold -- 15.6 Inherently Resilient Elements -- 15.7 Summary and Conclusions -- References -- Index -- EULA.
Titolo autorizzato: Resilient power electronic systems  Visualizza cluster
ISBN: 1-119-77221-4
1-119-77219-2
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910677884403321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui