Vai al contenuto principale della pagina

AC/DC hybrid large-scale power grid system protection / / Xinzhou Dong



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Dong Xinzhou Visualizza persona
Titolo: AC/DC hybrid large-scale power grid system protection / / Xinzhou Dong Visualizza cluster
Pubblicazione: Singapore : , : Springer, , [2023]
©2023
Descrizione fisica: 1 online resource (338 pages)
Disciplina: 621.317
Soggetto topico: Electric power systems - Protection
Electric power distribution - Security measures
Electric power distribution
Nota di bibliografia: Includes bibliographical references (pages 313-324).
Nota di contenuto: Intro -- Foreword by Zhou Xiaoxin -- Foreword by Sun Guanghui -- Preface -- Contents -- 1 Overview -- 1.1 Analysis of Typical Chain Failures in Domestic and International Power Grids -- 1.1.1 2012 Southern Grid AC Failure Triggers Phase Change Failure [1] -- 1.1.2 Power Outage in Brazil -- 1.2 Interlocking Faults in AC-DC Hybrid Grids -- 1.2.1 Current Status and Development Trend of Domestic and International Power Grids -- 1.2.2 Key Features of the AC-DC Hybrid Grid -- 1.2.3 Interlocking Faults in AC-DC Hybrid Grids -- 1.3 System Protection Against Interlocking Faults in Mixed AC-DC Grids -- 1.3.1 Defined Functions and Components of System Protection -- 1.3.2 Our Three Lines of Defense [44] -- 1.3.3 Special Protection Systems [48] -- 2 Distance Protection Against Overload -- 2.1 Analysis of the Action Behavior of the Distance III Section Under Accidental Overload -- 2.1.1 Triggering Events for Accidental Overload -- 2.1.2 Action Behavior of Distance III Segments During Dynamics -- 2.2 Network Analysis of Accidental Overload -- 2.2.1 Station Domain Accidental Overload Versus Nonstation Domain Accidental Overload -- 2.2.2 Network Analysis of Nonstation Domain Accidental Overload -- 2.3 Analysis of the Conditions for the Operation of the Distance III Section Under Accidental Overload -- 2.3.1 Operating Condition 1: The Line is Heavily Loaded, and the Equivalent System Power Angle is Stable at Both Ends -- 2.3.2 Operating Condition 2: The Line is Heavily Loaded, and the Equivalent System Voltage at Both Ends is Stable -- 2.3.3 Adjustment Conditions: Protection Installed on Long Lines and Large Fixed Values -- 2.3.4 Summary -- 2.4 Identification Methods for Accidental Overload -- 2.4.1 Division of the Incident Overload Action Domain and Protection Action Domain -- 2.4.2 Identification of Dynamic Processes of Accidental Overload.
2.5 Distance III Accidental Overload Blocking Scheme -- 2.5.1 Description of the Lockout Program -- 2.5.2 Lockout Logic -- 2.6 Solving for the Davinan Equivalent Impedance -- 2.7 Adaptive Adjustment of Distance Protection Based on Shared Information in the Station Domain -- 2.7.1 Factors Affecting Distance III Segment Adjustment and Performance -- 2.7.2 Adaptive Tuning Scheme -- 2.7.3 Simulation Analysis of Overload Blocking Performance -- 2.7.4 Simulation Analysis of Intra-Zone Faults and Complex Fault Opening -- 2.7.5 Summary -- 3 Immunityin Distance Protection of Oscillations -- 3.1 Multiphase Compensated Distance Relays -- 3.2 Multiphase Compensated Distance Relay Performance Analysis -- 3.2.1 Oscillation Without Fault Condition -- 3.2.2 Fault Conditions Without Oscillation -- 3.2.3 Oscillation Accompanied by Fault Conditions -- 3.2.4 Effect of Transition Resistors on Multiphase Compensated Distance Relays -- 3.3 Distance Protection from Power System Oscillations -- 3.3.1 Improved Multiphase Compensated Distance Protection -- 3.3.2 Distance Protection Based on Information from Both Ends -- 3.4 EMTP Simulation Experiments -- 3.4.1 Simulation System -- 3.4.2 Power System Oscillations Without Fault Conditions -- 3.4.3 Power System Oscillation with a Single-Phase Ground Fault in the Zone -- 3.4.4 Power System Oscillation with Out-Of-Area Single-Phase Ground Fault Conditions -- 3.4.5 Transition Resistance Test -- 3.5 Summary -- 4 Commutation Failure Prevention and Control -- 4.1 Analysis of the DC Commutation Failure Mechanism -- 4.1.1 First Commutation Failure -- 4.1.2 Continuous Commutation Failure -- 4.1.3 Multifed DC Commutation Failure -- 4.2 Early Warning Measures for Commutation Failure in a Hybrid AC/DC Grid -- 4.2.1 Early Warning Measures for the First Commutation Failure -- 4.2.2 Early Warning Measures for Continuous Commutation Failure.
4.2.3 Early Warning Measures for Multifeeder DC Commutation Failure -- 4.3 Commutation Failure Suppression for the AC/DC Hybrid Grid -- 4.3.1 Suppression Measures for the First Commutation Failure -- 4.3.2 Suppression Measures Against Successive Commutation Failures -- 4.3.3 Suppression Measures for Multifeed DC Successive Commutation Failures -- 4.4 Summary -- 5 DC Participation in Emergency Tidal Control -- 5.1 Study of Multidimensional Coupling Mechanism of an AC-DC Hybrid Grid -- 5.1.1 Methodology for Evaluating the Degree of Commutation Bus Voltage Interactions in Hybrid DC Networks with Different Control Methods -- 5.1.2 Calculation of the Maximum Delivered Power of HVDC Based on Equivalent Impedance -- 5.1.3 Short-Circuit Ratio and Operational Evaluation Method for Multifeed-In Operation Based on Equivalent Impedance -- 5.1.4 Multifeeder System Tuner Capacity Calculation Method Based on Power Support Requirements -- 5.2 Multi-indicator Static Security Domain for AC-DC Hybrid Grids -- 5.2.1 Definition and Model of a Multimetric Static Safety Domain for AC-DC Hybrid Grids -- 5.2.2 A Method for Inscribing the Full-Dimensional Static Safety Domain of Hybrid AC-DC Grids Considering Different Control Methods -- 5.2.3 Methodology for Inscribing Low-Dimensional Focal Variable Safety Sections (Profiles) in the Static Safety Domain of AC-DC Hybrid Grids -- 5.2.4 Static Safety Domain Inscription Method for AC-DC Hybrid Grids Containing Controllable Series Capacitor Converters -- 5.2.5 Methods for Inscribing the Decoupled Security Domain of an AC-DC Hybrid Grid -- 5.2.6 Evolutionary Characteristics and Impact Analysis of the Static Safety Domain of Hybrid AC-DC Grids -- 5.3 Coordinated Control Objectives and Control Methods When Multiple DC Systems Are Involved in the Rapid Control of Tidal Currents.
5.3.1 AC-DC Static Safety Domain Under Meter and Time Characteristic DC Active Adjustment Method -- 5.3.2 Safety Correction Strategy for Hybrid AC-DC Grids Based on Safety Distance Sensitivity -- 5.3.3 Optimal Scheduling Based on Safety-Corrected Control in the Static Safety Domain of Hybrid AC-DC Grids -- 5.3.4 Preventive Correction Coordination Control Based on Static Safety Domain for Hybrid AC-DC Grids -- 5.3.5 Fast Tidal Control Based on Decoupled Security Domains -- 5.4 Summary -- 6 Adaptive Overload Protection for Overhead Transmission Lines -- 6.1 Introduction -- 6.2 Line Emergency Current-Carrying Capacity Analysis -- 6.2.1 Mechanical Strength -- 6.2.2 Arc Drape -- 6.2.3 Fittings and Various Types of Connectors -- 6.2.4 Summary of Emergency Current-Carrying Capacity -- 6.3 Line Adaptive Overload Protection Action Time -- 6.3.1 Line Temperature Calculation and Action Time Analysis -- 6.3.2 Prediction Based on the Echo State Network Method -- 6.4 Component Scheme for Line Adaptive Overload Protection -- 6.4.1 Rectification Scheme and Action Logic -- 6.4.2 Algorithm Flow -- 6.4.3 Applications and Calculations -- 6.4.4 Summary -- Appendix Transient Temperature Calculations -- Joule Heat Absorption -- Heat Absorption by Insolation -- Convection Heat Dissipation -- Radiation Heat Dissipation -- Method of Calculation -- Wire Parameters -- Bibliography.
Titolo autorizzato: AC  Visualizza cluster
ISBN: 9789811964862
9789811964855
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910627259303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui