Vai al contenuto principale della pagina

Biotechnological innovations for environmental bioremediation / / Sudipti Arora [and three others], editors



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Biotechnological innovations for environmental bioremediation / / Sudipti Arora [and three others], editors Visualizza cluster
Pubblicazione: Singapore : , : Springer, , [2022]
©2022
Descrizione fisica: 1 online resource (1072 pages)
Disciplina: 628.5
Soggetto topico: Bioremediation
Bioremediació
Soggetto genere / forma: Llibres electrònics
Persona (resp. second.): AroraSudipti
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Intro -- Foreword -- Preface -- Part I: Environmental Remediation -- Part II: Phytoremediation -- Part III: Environmental Safety, Health, and Risk Assessment -- Acknowledgements -- Introduction -- Part I: Environmental Remediation -- Part II: Phytoremediation -- Part III: Environmental Safety, Health, and Risk Assessments -- Contents -- Editors and Contributors -- Part I: Environmental Remediation -- 1: Ecosystem Engineers: A Sustainable Catalyst for Environmental Remediation -- 1.1 Introduction -- 1.2 Green Technologies for the Sustainable Development -- 1.3 Bioremediation: An Effective Tool to Manage Pollution -- 1.3.1 Ecosystem Engineers -- 1.3.2 Conventional Bioremediation Approaches for Pollutant Mitigation: Micro-Remediation -- 1.3.3 Mechanism behind Degradation -- 1.3.4 Sustainable Enzyme Technology for Environmental Remediation -- 1.3.4.1 Hydrolases (EC3) -- 1.3.4.2 Esterases (EC 3.1) -- 1.3.4.3 Nitrilases (EC 3.5.5.1) -- 1.3.4.4 Peroxidases (EC1) Ligninolytic Peroxidases -- 1.3.4.5 Lignin Peroxidase -- 1.3.4.6 Manganese Peroxidase (EC 1.11.1.13) -- 1.3.4.7 Cytochrome p450 Monooxygenase (EC 1.14.14.1) -- 1.4 Entomo-remediation -- 1.4.1 The Role of Earthworms in Pollutant Degradation -- 1.4.2 The Significance of Gut Produced Enzymes in Degradation Processes -- 1.5 Conclusions: A Road Ahead Towards Sustainable Development -- References -- 2: Microbial Nanobiotechnology in Environmental Pollution Management: Prospects and Challenges -- 2.1 Environmental Pollution -- 2.1.1 Types of Environmental Pollution -- 2.1.1.1 Air Pollution -- 2.1.1.2 Water Pollution -- 2.1.1.3 Soil Pollution -- 2.1.2 Effects of Pollution -- 2.2 Microbial Nanobiotechnology in Pollution Management -- 2.2.1 Microorganisms Important in Nanobiotechnological Management of Pollution -- 2.2.1.1 Bacteria -- 2.2.1.2 Fungi -- 2.2.1.3 Microalgae.
2.2.2 Secretion and Importance of Microbial Nanoparticle in Pollution Management -- 2.2.2.1 Gold Nanoparticle -- 2.2.2.2 Silver Nanoparticle -- 2.2.2.3 Titanium Oxide Nanoparticles -- 2.3 Principles of Nanotechnology in Pollution Management -- 2.3.1 Adsorption -- 2.3.2 Nanofiltration -- 2.3.3 Photocatalysis -- 2.4 Current Advances in Nanotechnological Management of Pollution -- 2.4.1 Pollution Bioremediation -- 2.4.2 Pollution Biosensory -- 2.4.3 Pollution Prevention -- 2.5 Risk Assessment and Sustainability of Nanotechnology in Pollution Management -- 2.6 Challenges and Recommendations -- 2.6.1 Challenges -- 2.6.2 Recommendations -- 2.7 Concluding Remarks -- References -- 3: Soil Microbiome: A Key Player in Conservation of Soil Health Under Changing Climatic Conditions -- 3.1 Introduction -- 3.2 Soil Microbiome -- 3.3 Function of Soil Microbiome for Improving Soil Health Under Changing Climate -- 3.4 Characteristics of the Microbiome of Soil -- 3.5 Factors Determining the Composition and Role of Soil Microbiome -- 3.6 Direct Impacts of Climate Change on Soil Communities and Plants -- 3.7 Climate Change Secondary Impacts on Plants and Soil Microbiome -- 3.8 Determination of Microbiome by Host Genotype -- 3.9 Alteration of Host Pathways Signaling -- 3.10 Alteration in Root Secretions -- 3.11 Targeted Engineering of Plant Microbiomes -- 3.12 Developing Areas in Microbiome Engineering -- 3.13 Utilizing Organic Soil Amendments and Root Exudates to Attract and Maintain Beneficial Microbiomes -- 3.14 Artificial Microbial Consortia -- 3.15 Microbiome Breeding and Transplantation -- 3.16 Microbiome Preservation -- 3.17 Methods of Microbiome Preservation -- 3.17.1 Cell Alive System (CAS) Technique for Intact Microbiome Preservation -- 3.17.2 Cryopreservation and Lyophilization in Microbiome Preservation -- 3.17.3 Gelatine Disk Method: Preservation of Sample.
3.17.4 Cellular Immobilization or Entrapment -- 3.17.5 Electrospinning and Electrospraying (Microencapsulation) in Microbiome Preservation -- 3.17.5.1 Prospective Contribution from Genome to Phenome on the Host of the Soil Microbiome -- 3.18 Sustainable Agriculture and Food Safety Due to Consequences of the Soil Microbiome -- 3.19 Conclusion -- References -- 4: Anaerobic Digestion for Climate Change Mitigation: A Review -- 4.1 Introduction -- 4.2 Anaerobic Digestion -- 4.2.1 Pretreatment Methods -- 4.2.1.1 Wastewater Treatment -- 4.2.1.2 Microbial Pretreatment -- 4.3 Methane -- 4.4 Methanogens -- 4.4.1 Phylogeny and Habitats of Methanogens -- 4.5 Methanogenesis -- 4.5.1 Hydrogenotrophic Archaea -- 4.5.2 Methylotrophic Methanogens -- 4.5.3 Aceticlastic Methanogens -- 4.6 Improvement in Methane Production -- 4.6.1 Nano-Biochar -- 4.6.2 Bioaugmentation -- 4.6.3 Ultrasound Pretreatment -- 4.6.4 Micro-Oxygenic Treatment -- 4.6.5 Role of Temperature -- 4.6.5.1 Mesophilic and Thermophilic Temperature -- 4.6.5.2 Psychrophilic Temperature -- 4.6.6 Effects of Silver Nanoparticles -- 4.7 Biotechnology of Archaea -- 4.7.1 Synthetic Genes for Industrial Products Production -- 4.8 Extracellular Electron -- 4.8.1 Mineralization -- 4.8.2 Biomineralization: Microbiologically Influenced Corrosion (MIC) -- 4.8.3 Direct Interspecies Electron Transfer (DIET) -- 4.9 Applications -- 4.9.1 Sweet Sorghum as a Source of Hydrogen and Methane -- 4.9.2 Anaerobic Digestion -- 4.9.3 Clostridium butyricum -- 4.9.4 Reactor System -- 4.9.5 Biogas -- 4.10 Discussion -- 4.11 Conclusion -- References -- 5: Mitigation of Microbially Influenced Corrosion of Concrete Sewers Using Nitrite -- 5.1 Introduction -- 5.2 Sewer System and Concrete Corrosion -- 5.2.1 Sewer System -- 5.2.1.1 Overview of the Sewer System -- 5.2.1.2 Sulfide in Sewers -- 5.2.2 Concrete Corrosion in Sewers.
5.2.2.1 Overview of Sewer Concrete Corrosion -- 5.2.2.2 Corrosion Layer Conditions -- 5.3 Applications of Nitrite in Sewer Systems -- 5.3.1 Reducing H2S Production in Anaerobic Sewers -- 5.3.2 Mitigating the Corrosion Development of Existing Corroding Sewers -- 5.3.3 Increasing the Corrosion Resistance of Nitrite Admixed Concrete -- References -- 6: Metabolic Engineering and Synthetic and Semi-Synthetic Pathways: Biofuel Production for Climate Change Mitigation -- 6.1 Introduction -- 6.2 Systems and Synthetic Biology -- 6.3 The CRISPR/Cas Revolution -- 6.4 The Role of Synthetic Biology in Atmospheric Greenhouse Gas Reduction -- 6.5 Synthetic Biology Tools to Engineer and Control Microbial Communities -- 6.5.1 Applications of Plant Synthetic Biology -- 6.5.2 Production of Functional Biomaterials -- 6.5.3 The Potential of Synthetic Microbial Consortia in Bioprocesses of the Future -- 6.5.4 Synthetic Antibody Could Prevent and Treat COVID-19 -- 6.5.5 Artemisinin -- 6.5.6 Resveratrol -- 6.6 Renewable Energy -- 6.6.1 Biomass and Biofuels -- 6.6.2 C3 and C4 Plants -- 6.7 Lignocellulosic Biofuels -- 6.8 Lignin Biosynthesis -- 6.9 Metabolic Engineering -- 6.10 Bio-Based Platform for Industrial Products -- 6.11 Biochemicals Derived from the Shikimate Pathway -- 6.12 Biochemicals Derived from the Isoprenoid Pathways -- 6.13 Agri-Waste to Value-Added Products -- 6.14 Discussion -- 6.15 Future Directions and Concluding Remarks -- References -- 7: Handmade Paper Industry: A Green and Sustainable Enterprise and Its Challenges -- 7.1 Introduction -- 7.2 National/International Demand -- 7.3 Composition of Wood -- 7.3.1 Cellulose -- 7.3.2 Hemicellulose -- 7.3.3 Lignin -- 7.4 Easily Availability of Machine/Equipment -- 7.5 Disadvantages of Using Nonwood Fiber (Bajpai 2018) -- 7.6 Challenges for Handmade Paper Manufacturing Process -- 7.6.1 Challenges for Raw Material.
7.6.2 Strengthening of Handmade Paper -- 7.6.3 The Degree of Difficulty in the Performance of Fiber Materials During Pulping -- 7.6.4 Challenges in Pulping -- 7.7 Environmental Effect -- 7.8 Economic Effect -- 7.9 Societal Impact -- 7.10 Significance of Handmade Paper -- 7.11 Future Research Areas -- 7.12 Conclusions -- References -- 8: Bioremediation Approaches and the Role of Microbes in the Bio-sustainable Rehabilitation of Polluted Sites -- 8.1 Introduction -- 8.2 The Principle of Bioremediation -- 8.2.1 Factors Affecting Bioremediation -- 8.2.1.1 Nutrients and Environmental Requirements -- 8.2.1.2 Energy Sources -- 8.2.1.3 Bioavailability and Bioactivity -- 8.3 Methods of Bioremediation -- 8.3.1 In Situ Bioremediation -- 8.3.2 Ex Situ Bioremediation -- 8.3.3 Phytoremediation -- 8.3.3.1 Phytoextraction or Phytoaccumulation -- 8.3.3.2 Phytostabilization or Phyto-immobilization -- 8.3.3.3 Phytotransformation or Phytodegradation -- 8.4 Microbes That Assist in the Bioremediation Processes -- 8.5 Advantages and Disadvantages of Bioremediation -- 8.6 Conclusion -- References -- 9: Recent Bioremediation Techniques for the Removal of Industrial Wastes -- 9.1 Introduction -- 9.2 Recent Bioremediation Methods for Mitigating Various Industrial Wastes -- 9.2.1 Microbial Bioremediation -- 9.2.2 Genetically Modified Microbes for Enhanced Bioremediation -- 9.2.3 Phytoremediation -- 9.2.4 Phytobial -- 9.2.5 Electro-bioremediation Technique -- 9.2.6 Electrokinetic-Phytoremediation Technique -- 9.2.7 Microbial Fuel Cells for Bioremediation -- 9.2.8 Nano-bioremediation Technique -- 9.2.9 Constructed Wetlands -- 9.3 Limitations, Prospects and Conclusion -- References -- 10: Pesticides: Indian Scenario on Environmental Concerns and Future Alternatives -- 10.1 Introduction -- 10.2 Consumption of Pesticides in India -- 10.3 Impact of Chemical Pesticides.
10.3.1 Regulations and Quality Control.
Titolo autorizzato: Biotechnological innovations for environmental bioremediation  Visualizza cluster
ISBN: 981-16-9001-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910586592703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui