Vai al contenuto principale della pagina

Machine learning approaches for convergence of IoT and blockchain / / edited by Krishna Kant Singh, Akansha Singh, Sanjay K. Sharma



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Machine learning approaches for convergence of IoT and blockchain / / edited by Krishna Kant Singh, Akansha Singh, Sanjay K. Sharma Visualizza cluster
Pubblicazione: Hoboken, New Jersey : , : Wiley-Scrivener, , [2021]
©2021
Descrizione fisica: 1 online resource (256 pages)
Disciplina: 006.31
Soggetto topico: Machine learning
Internet of things
Blockchains (Databases)
Persona (resp. second.): SinghAkansha
SinghKrishna Kant
SharmaSanjay K.
Nota di contenuto: Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Blockchain and Internet of Things Across Industries -- 1.1 Introduction -- 1.2 Insight About Industry -- 1.2.1 Agriculture Industry -- 1.2.2 Manufacturing Industry -- 1.2.3 Food Production Industry -- 1.2.4 Healthcare Industry -- 1.2.5 Military -- 1.2.6 IT Industry -- 1.3 What is Blockchain? -- 1.4 What is IoT? -- 1.5 Combining IoT and Blockchain -- 1.5.1 Agriculture Industry -- 1.5.2 Manufacturing Industry -- 1.5.3 Food Processing Industry -- 1.5.4 Healthcare Industry -- 1.5.5 Military -- 1.5.6 Information Technology Industry -- 1.6 Observing Economic Growth and Technology's Impact -- 1.7 Applications of IoT and Blockchain Beyond Industries -- 1.8 Conclusion -- References -- 2 Layered Safety Model for IoT Services Through Blockchain -- 2.1 Introduction -- 2.1.1 IoT Factors Impacting Security -- 2.2 IoT Applications -- 2.3 IoT Model With Communication Parameters -- 2.3.1 RFID (Radio Frequency Identification) -- 2.3.2 WSH (Wireless Sensor Network) -- 2.3.3 Middleware (Software and Hardware) -- 2.3.4 Computing Service (Cloud) -- 2.3.5 IoT Software -- 2.4 Security and Privacy in IoT Services -- 2.5 Blockchain Usages in IoT -- 2.6 Blockchain Model With Cryptography -- 2.6.1 Variations of Blockchain -- 2.7 Solution to IoT Through Blockchain -- 2.8 Conclusion -- References -- 3 Internet of Things Security Using AI and Blockchain -- 3.1 Introduction -- 3.2 IoT and Its Application -- 3.3 Most Popular IoT and Their Uses -- 3.4 Use of IoT in Security -- 3.5 What is AI? -- 3.6 Applications of AI -- 3.7 AI and Security -- 3.8 Advantages of AI -- 3.9 Timeline of Blockchain -- 3.10 Types of Blockchain -- 3.11 Working of Blockchain -- 3.12 Advantages of Blockchain Technology -- 3.13 Using Blockchain Technology With IoT -- 3.14 IoT Security Using AI and Blockchain.
3.15 AI Integrated IoT Home Monitoring System -- 3.16 Smart Homes With the Concept of Blockchain and AI -- 3.17 Smart Sensors -- 3.18 Authentication Using Blockchain -- 3.19 Banking Transactions Using Blockchain -- 3.20 Security Camera -- 3.21 Other Ways to Fight Cyber Attacks -- 3.22 Statistics on Cyber Attacks -- 3.23 Conclusion -- References -- 4 Amalgamation of IoT, ML, and Blockchain in the Healthcare Regime -- 4.1 Introduction -- 4.2 What is Internet of Things? -- 4.2.1 Internet of Medical Things -- 4.2.2 Challenges of the IoMT -- 4.2.3 Use of IoT in Alzheimer Disease -- 4.3 Machine Learning -- 4.3.1 Case 1: Multilayer Perceptron Network -- 4.3.2 Case 2: Vector Support Machine -- 4.3.3 Applications of the Deep Learning in the Healthcare Sector -- 4.4 Role of the Blockchain in the Healthcare Field -- 4.4.1 What is Blockchain Technology? -- 4.4.2 Paradigm Shift in the Security of Healthcare Data Through Blockchain -- 4.5 Conclusion -- References -- 5 Application of Machine Learning and IoT for Smart Cities -- 5.1 Functionality of Image Analytics -- 5.2 Issues Related to Security and Privacy in IoT -- 5.3 Machine Learning Algorithms and Blockchain Methodologies -- 5.3.1 Intrusion Detection System -- 5.3.2 Deep Learning and Machine Learning Models -- 5.3.3 Artificial Neural Networks -- 5.3.4 Hybrid Approaches -- 5.3.5 Review and Taxonomy of Machine Learning -- 5.4 Machine Learning Open Source Tools for Big Data -- 5.5 Approaches and Challenges of Machine Learning Algorithms in Big Data -- 5.6 Conclusion -- References -- 6 Machine Learning Applications for IoT Healthcare -- 6.1 Introduction -- 6.2 Machine Learning -- 6.2.1 Types of Machine Learning Techniques -- 6.2.2 Applications of Machine Learning -- 6.3 IoT in Healthcare -- 6.3.1 IoT Architecture for Healthcare System -- 6.4 Machine Learning and IoT.
6.4.1 Application of ML and IoT in Healthcare -- 6.5 Conclusion -- References -- 7 Blockchain for Vehicular Ad Hoc Network and Intelligent Transportation System: A Comprehensive Study -- 7.1 Introduction -- 7.2 Related Work -- 7.3 Connected Vehicles and Intelligent Transportation System -- 7.3.1 VANET -- 7.3.2 Blockchain Technology and VANET -- 7.4 An ITS-Oriented Blockchain Model -- 7.5 Need of Blockchain -- 7.5.1 Food Track and Trace -- 7.5.2 Electric Vehicle Recharging -- 7.5.3 Smart City and Smart Vehicles -- 7.6 Implementation of Blockchain Supported Intelligent Vehicles -- 7.7 Conclusion -- 7.8 Future Scope -- References -- 8 Applications of Image Processing in Teleradiology for the Medical Data Analysis and Transfer Based on IOT -- 8.1 Introduction -- 8.2 Pre-Processing -- 8.2.1 Principle of Diffusion Filtering -- 8.3 Improved FCM Based on Crow Search Optimization -- 8.4 Prediction-Based Lossless Compression Model -- 8.5 Results and Discussion -- 8.6 Conclusion -- Acknowledgment -- References -- 9 Innovative Ideas to Build Smart Cities with the Help of Machine and Deep Learning and IoT -- 9.1 Introduction -- 9.2 Related Work -- 9.3 What Makes Smart Cities Smart? -- 9.3.1 Intense Traffic Management -- 9.3.2 Smart Parking -- 9.3.3 Smart Waste Administration -- 9.3.4 Smart Policing -- 9.3.5 Shrewd Lighting -- 9.3.6 Smart Power -- 9.4 In Healthcare System -- 9.5 In Homes -- 9.6 In Aviation -- 9.7 In Solving Social Problems -- 9.8 Uses of AI-People -- 9.8.1 Google Maps -- 9.8.2 Ridesharing -- 9.8.3 Voice-to-Text -- 9.8.4 Individual Assistant -- 9.9 Difficulties and Profit -- 9.10 Innovations in Smart Cities -- 9.11 Beyond Humans Focus -- 9.12 Illustrative Arrangement -- 9.13 Smart Cities with No Differentiation -- 9.14 Smart City and AI -- 9.15 Further Associated Technologies -- 9.15.1 Model Identification -- 9.15.2 Picture Recognition.
9.15.3 IoT -- 9.15.4 Big Data -- 9.15.5 Deep Learning -- 9.16 Challenges and Issues -- 9.16.1 Profound Learning Models -- 9.16.2 Deep Learning Paradigms -- 9.16.3 Confidentiality -- 9.16.4 Information Synthesis -- 9.16.5 Distributed Intelligence -- 9.16.6 Restrictions of Deep Learning -- 9.17 Conclusion and Future Scope -- References -- Index -- EULA.
Titolo autorizzato: Machine learning approaches for convergence of IoT and blockchain  Visualizza cluster
ISBN: 1-119-76187-5
1-119-76188-3
1-119-76180-8
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910554844003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui