Vai al contenuto principale della pagina

Bioenergy research : basic and advanced concepts / / edited by Manish Srivastava, Neha Srivastava, and Rajeev Singh



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Bioenergy research : basic and advanced concepts / / edited by Manish Srivastava, Neha Srivastava, and Rajeev Singh Visualizza cluster
Pubblicazione: Singapore : , : Springer, , [2021]
©2021
Descrizione fisica: 1 online resource (350 pages) : illustrations
Disciplina: 662.88
Soggetto topico: Biomass energy
Persona (resp. second.): SrivastavaNeha <1981->
SrivastavaManish
SinghRajeev
Nota di contenuto: Intro -- Foreword -- Acknowledgments -- Contents -- About the Editors -- Chapter 1: Downstream Processing of Biofuels -- 1.1 Introduction -- 1.1.1 Biofuels and Their Importance -- 1.1.2 History of Biofuels -- 1.1.3 Different Generations of Biofuels -- 1.1.4 Biofuel Development Across the Globe -- 1.1.5 Specifications for Biofuels -- 1.2 Production of Bioethanol -- 1.2.1 Downstream Processing of Biofuels -- 1.2.1.1 Pervaporation -- 1.2.1.2 Gas Stripping -- 1.2.1.3 Distillation -- Heat-Integrated Distillation -- Membrane-Based Downstream Separation -- Ohmic-Assisted Hydrodistillation -- 1.2.1.4 Diffusion Distillation -- 1.2.1.5 Salting out Method -- 1.2.1.6 Adsorption -- 1.2.1.7 Extraction Liquid-Liquid -- 1.2.2 In Situ/In-Stream Recovery Techniques -- 1.2.2.1 In-Stream Recovery -- 1.2.2.2 Vacuum Fermentation -- 1.2.3 Comparison of Various Biofuels Recovery Techniques on the Basis of Economics -- 1.2.4 Downstream Processing of Third Generation of Biofuels -- 1.3 Harvesting Method -- 1.3.1 Settling/Sedimentation/Gravity Sedimentation -- 1.3.2 Centrifugation -- 1.3.3 Filtration -- 1.3.4 Sedimentation -- 1.3.5 Membrane Separation -- 1.3.6 Flocculation -- 1.3.6.1 Chemical Flocculation -- 1.3.6.2 Auto and Bioflocculation -- 1.3.6.3 Inorganic Flocculants and Coagulants -- 1.3.6.4 Organic Flocculants and Coagulants -- 1.3.6.5 Electroflocculation/Electro-Coagulation/Electrolytic Aggregation -- 1.3.7 Flotation -- 1.3.7.1 Dissolved Air Flotation (DAF) -- 1.3.7.2 Froth Floatation -- 1.3.7.3 Dispersed Flotation -- 1.3.7.4 Ozone Flotation -- 1.3.7.5 Electrolytic Flotation -- 1.3.7.6 Foam Flotation -- 1.3.8 Magnetic Separation -- 1.3.9 Ultrasonic Separation -- 1.4 Cell Disruption Techniques -- 1.4.1 Bead Beating -- 1.4.2 High-Pressure Homogenization -- 1.5 Extraction of Lipid -- 1.5.1 Single Solvent Extraction -- 1.5.2 Supercritical Extraction.
1.5.3 Enzymatic Extraction -- 1.5.4 Extraction Through Ultrasound -- 1.5.5 Microwave-Assisted Extraction -- 1.5.6 Ionic Liquids for Extraction -- 1.6 Hydrodynamic Fluidic Devices -- 1.7 Direct Biofuel Production from Algae -- 1.8 Conclusion -- References -- Chapter 2: Application of Microorganisms for Biofuel Production -- 2.1 Introduction -- 2.2 Biofuels: Definition, Classification and Characterization -- 2.2.1 Characteristics of Biofuels -- 2.2.1.1 Classification of Biofuels According to Generations -- 2.3 Technology for Production of Biofuels -- 2.3.1 Pretreatment -- 2.3.2 Enzyme Conversion Technology -- 2.4 Microbial Production of Biodiesel -- 2.4.1 Microbial Production of Biodiesel -- 2.4.1.1 Microalgae -- 2.4.1.2 Production of Biomass from Microalgae -- 2.4.1.3 Trans-Esterification -- 2.4.2 Bacteria -- 2.4.3 Yeast and Fungi -- 2.5 Bioethanol -- 2.5.1 Substrates for Bioethanol Production -- 2.5.2 Stages of Bioethanol Production -- 2.5.3 Microbiological Production of Bioethanol -- 2.6 Microbiological Production of Hydrogen -- 2.6.1 Substrate Involved in Fermentation -- 2.6.2 Microorganisms Involved in Biohydrogen Production -- 2.6.3 Pretreatments for the Feedstock -- 2.6.4 Dark Fermentation -- 2.6.5 Photofermentation -- 2.6.6 Biophotolysis of Water Using Algae and Cyanobacteria -- 2.6.6.1 Direct Biophotolysis -- 2.6.6.2 Indirect Biophotolysis -- 2.6.7 Hybrid System Using Photosynthetic and Fermentative Bacteria: -- 2.6.8 Microbial Electrolysis Cell -- 2.6.9 Biohydrogen Production from Algae -- 2.7 Microbial Production of Biogas/Biomethane -- 2.7.1 Feedstock for Biogas Production -- 2.7.2 Biological and Chemical Process -- 2.7.3 Hydrolysis -- 2.7.4 Acidogenesis -- 2.7.5 Acetogenesis -- 2.7.6 Methanogenesis -- 2.8 Microbial Production of Butanol -- 2.8.1 Feedstock for Biobutanol Production -- 2.8.2 Microorganisms Involved in Butanol Production.
2.8.3 Production Process -- 2.8.4 Pretreatment Process -- 2.8.5 Physical Treatment -- 2.8.6 Physicochemical Method -- 2.8.7 Chemical Method -- 2.8.8 Production Process -- 2.8.9 Applications -- 2.9 Syngas Fermentation -- 2.9.1 Microorganisms Involved -- 2.9.2 Fermentation -- 2.9.3 Application -- 2.10 Conclusion -- References -- Chapter 3: Influence of Significant Parameters on Cellulase Production by Solid-State Fermentation -- 3.1 Introduction -- 3.2 Cellulose -- 3.3 Cellulases -- 3.4 Composition of Lignocelluloses -- 3.5 Influence of Important Parameters on Production of Cellulase -- 3.5.1 Lignocellulosic Substrates -- 3.5.2 Carbon Source -- 3.5.3 Nitrogen Source -- 3.5.4 pH -- 3.5.5 Temperature -- 3.5.6 Moisture Content -- 3.6 Cellulase in Biomass Hydrolysis and Biofuel Production -- 3.7 Future Perspectives and Conclusions -- References -- Chapter 4: Influence of Xenobiotics on Fungal Ligninolytic Enzymes -- 4.1 Introduction -- 4.2 Effect of Contaminants (Xenobiotics) on the Biomass of WRF -- 4.2.1 Effect of Insecticide: Malathion -- 4.2.2 Effect of Organophosphorus Insecticides (Diazinon, Profenofos, and Malathion) -- 4.2.3 Effect of Hexachlorocyclohexanes (HCH) -- 4.2.4 Influence of Lindane -- 4.2.5 Effect of Diuron -- 4.2.6 Effect of Chlorophenols -- 4.2.7 Effect of Diuron and Bentazon -- 4.2.8 Effect of Fungicides (Thiram, Zineb, or PCP) and Heavy Metals -- 4.2.9 Effect of Polyaromatic Hydrocarbons (PAH) -- 4.2.10 Influence of 2,4,6-Trinitrotoluene (TNT) -- 4.3 Effect of Xenobiotics on the Secretion of LMEs by WRF -- 4.3.1 Effect of Malathion -- 4.3.2 Effect of Lindane -- 4.3.3 Effect of Isoproturon -- 4.3.4 Effect of Herbicides Diuron and Bentazon -- 4.3.5 Effect of Diuron -- 4.3.6 Effect of Chlorpyrifos -- 4.3.7 Effect of 2,4,6-Trinitrotoluene (TNT) -- 4.3.8 Effect of Fluorene -- 4.3.9 Effect of Dyes -- 4.4 Biodegradation of Pollutants by WRF.
4.4.1 LE Involved in Bioremediation of Xenobiotic Compounds -- 4.5 Conclusions -- References -- Chapter 5: Challenges in Bioethanol Production: Effect of Inhibitory Compounds -- 5.1 Introduction -- 5.1.1 Pretreatment Explained -- 5.1.1.1 Mechanical Pretreatment -- 5.1.1.2 Chemical Pretreatment Methods -- 5.1.1.3 Physico-Chemical Pretreatment -- 5.1.1.4 Biological Pretreatment -- 5.1.1.5 Combined Pretreatments -- 5.2 Effect on Lignocellulosic Structures -- 5.3 Hydroxymethyl Furfural (HMF) -- 5.4 Furfural -- 5.5 Weak Acids -- 5.6 Phenolic Compounds -- 5.7 How to Minimize Inhibitory Compound Formation -- 5.7.1 Removal of Inhibitory Compounds -- 5.7.2 Biological Detoxification -- 5.8 Drawbacks of Biological Method -- 5.8.1 Adaptation of Microbes -- 5.8.2 Genetic Engineering -- 5.8.3 Some Other General Strategies -- 5.9 Conclusion -- References -- Chapter 6: Engineering of Zymomonas mobilis for Enhanced Biofuel Production -- 6.1 Introduction -- 6.2 Attractive Physical Characteristics of Zymomonas mobilis for Biotechnology -- 6.3 Sequence Detection of Various Genes of Zymomonas mobilis -- 6.4 Improvement of Strain by Adaptable Laboratory Evolution (ALE) -- 6.5 Escalation in the Surface Implementation Variety of Zymomonas mobilis -- 6.6 Modifying Laboratory Transformation of Ethanologenic Zymomonas mobilis Strain that Is Being Tolerant to Acetic Acid Inhibi... -- 6.7 Functional Genes in Z. mobilis -- 6.7.1 How Z. mobilis Is Unique -- 6.7.2 Pretreatment of Biomass -- 6.7.3 Biomass Feedstocks -- 6.7.4 Strategies to Overcome Toxic Compounds -- 6.7.5 Strain Evaluation and Fermentation Strategies -- 6.8 Fermentation Systems -- 6.9 Biosynthesis Pathways -- 6.10 Valuable Byproducts of Z. mobilis -- 6.10.1 Isobutanol Production -- 6.10.2 Levan Production -- 6.10.3 Substrate Utilization Range -- 6.11 Strategies for Strain Improvement of Z. mobilis.
6.11.1 Conventional Mutagenesis -- 6.11.2 Transposon Mutagenesis -- 6.11.3 Adaptive Laboratory Evolution (ALE) -- 6.11.4 Conjugation -- 6.11.5 Recombination -- 6.11.6 Recombinant Strains of Z. mobilis -- 6.11.7 Co-Fermentation -- 6.11.8 Consolidated Bioprocessing Approach (CBP) -- 6.11.9 Gene Knockout -- 6.11.10 Genomics -- 6.11.11 Transcriptomic -- 6.11.12 Using Shuttle Vectors -- 6.12 Heterologous Biofuel Production -- 6.13 Conclusion -- References -- Chapter 7: Sustainable Production of Hydrogen by Algae: Current Status and Future Perspectives -- 7.1 Introduction -- 7.2 Hydrogen Production by Algae -- 7.3 Microalgae for Hydrogen Production -- 7.4 Macroalgae for Hydrogen Production -- 7.5 Mechanism of Hydrogen Production by Algae -- 7.6 Factors Affecting the Production of Hydrogen by Algae -- 7.6.1 Nutrients -- 7.6.2 pH, Temperature, and Pretreatment -- 7.6.3 Substrate and Salt Concentration -- 7.6.4 Light Intensity -- 7.7 Bioreactors for Algal Hydrogen Production -- 7.8 Current Status of Algal Hydrogen Production. -- 7.9 Conclusions -- References -- Chapter 8: Bioprocess Parameters for Thermophilic and Mesophilic Biogas Production: Recent Trends and Challenges -- 8.1 Introduction -- 8.2 Thermophilic and Mesophilic Anaerobic Digestion -- 8.3 Mechanism of Biogas Production -- 8.4 Microorganisms in Anaerobic Digestion -- 8.5 Process Parameters Affecting Anaerobic Digestion -- 8.6 Reactor Design -- 8.7 Advantages and Disadvantages of Anaerobic Treatment -- 8.8 Challenges in Biogas Production -- 8.9 Conclusions -- References -- Chapter 9: Microbial and Bioinformatics Approach in Biofuel Production -- 9.1 Biofuels -- 9.2 Pretreatment of Biomass -- 9.2.1 Physical Methods -- 9.2.2 Chemical Methods -- 9.2.3 Physiochemical Methods -- 9.2.4 Biological Methods -- 9.3 Lignocellulose -- 9.3.1 Cellulose and Cellulolytic Enzymes.
9.3.1.1 Endoglucanases (Endo-1,4-β-Glucanes or 1,4-β-D-Glucan-4-Glucanohydrolases, EC 3.2.1.4).
Titolo autorizzato: Bioenergy research  Visualizza cluster
ISBN: 981-334-611-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910483387803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Clean Energy Production Technologies