Vai al contenuto principale della pagina
| Autore: |
Ambrosio Luigi
|
| Titolo: |
Gradient flows [[electronic resource] ] : in metric spaces and in the space of probability measures / / Luigi Ambrosio, Nicola Gigli, Giuseppe Savaré
|
| Pubblicazione: | Basel, : Birkhäuser, 2008 |
| Edizione: | 2nd ed. |
| Descrizione fisica: | 1 online resource (339 p.) |
| Disciplina: | 515.42 |
| Soggetto topico: | Measure theory |
| Metric spaces | |
| Differential equations, Parabolic | |
| Monotone operators | |
| Evolution equations, Nonlinear | |
| Soggetto genere / forma: | Electronic books. |
| Altri autori: |
GigliNicola
SavaréGiuseppe
|
| Note generali: | Previous ed.: 2005. |
| Nota di bibliografia: | Includes bibliographical references and index. |
| Nota di contenuto: | Notation -- Notation -- Gradient Flow in Metric Spaces -- Curves and Gradients in Metric Spaces -- Existence of Curves of Maximal Slope and their Variational Approximation -- Proofs of the Convergence Theorems -- Uniqueness, Generation of Contraction Semigroups, Error Estimates -- Gradient Flow in the Space of Probability Measures -- Preliminary Results on Measure Theory -- The Optimal Transportation Problem -- The Wasserstein Distance and its Behaviour along Geodesics -- Absolutely Continuous Curves in p(X) and the Continuity Equation -- Convex Functionals in p(X) -- Metric Slope and Subdifferential Calculus in (X) -- Gradient Flows and Curves of Maximal Slope in p(X). |
| Sommario/riassunto: | Devoted to a theory of gradient flows in spaces which are not necessarily endowed with a natural linear or differentiable structure, this book focuses on gradient flows in metric spaces. It covers gradient flows in the space of probability measures on a separable Hilbert space, endowed with the Kantorovich-Rubinstein-Wasserstein distance. |
| Titolo autorizzato: | Gradient flows ![]() |
| ISBN: | 1-281-85136-1 |
| 9786611851361 | |
| 3-7643-8722-X | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910453423003321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |