Vai al contenuto principale della pagina

Planets, Stars and Stellar Systems [[electronic resource] ] : Volume 3: Solar and Stellar Planetary Systems / / edited by Linda M. French, Paul Kalas



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Planets, Stars and Stellar Systems [[electronic resource] ] : Volume 3: Solar and Stellar Planetary Systems / / edited by Linda M. French, Paul Kalas Visualizza cluster
Pubblicazione: Dordrecht : , : Springer Netherlands : , : Imprint : Springer, , 2013
Edizione: 1st ed. 2013.
Descrizione fisica: 1 online resource (238 illus., 132 illus. in color. eReference.)
Disciplina: 523.01
Soggetto topico: Astrophysics
Planetology
Astrobiology
Observations, Astronomical
Astronomy—Observations
Astrophysics and Astroparticles
Astronomy, Observations and Techniques
Persona (resp. second.): FrenchLinda M
KalasPaul
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di contenuto: Intro -- Planets, Stars and Stellar Systems -- Series Preface -- Preface to Volume 3 -- Editor-in-Chief -- Volume Editors -- Table of Contents -- List of Contributors -- 1 FromDisks to Planets -- 1 Introduction -- 2 Observational Constraints on Planet Formation Theories -- 2.1 Lessons from the Solar System -- 2.1.1 The Solar Nebula -- 2.1.2 Isotopic Timescales -- 2.1.3 Water -- 2.2 Disks Surrounding the Youngest Stars -- 2.3 The Exoplanet Revolution -- 3 Disk Properties and Evolution -- 3.1 Basic Disk Dynamics -- 3.2 Transport Mechanisms and the Disk Model -- 3.3 Viscously Heated Disks -- 3.4 Steady Irradiated Disks -- 3.5 Time Dependence -- 3.6 Disk Instabilities and Fragmentation -- 4 From Dust to Planetesimals -- 4.1 The ``Meter-Sized'' Barrier -- 4.1.1 Radial Drift and the Basics of Disk Aerodynamics -- 4.1.2 Early Collisional Growth -- 4.2 Gravitational Collapse of Solids into Planetesimals -- 4.3 Aerodynamic Particle Concentration -- 4.4 Observational Constraints on Planetesimal Formation -- 5 Planetesimals to Planets -- 5.1 Growth of Solid Protoplanets -- 5.1.1 Basic Length and Velocity Scales -- 5.1.2 Gravitationally Focused Collisions -- 5.1.3 Planetesimal Velocity Evolution -- 5.1.4 Fragmentation -- 5.1.5 Planetesimal Accretion with Gas Damping -- 5.1.6 Numerical Simulations of Low-Mass Planet Formation -- 5.2 Accretion of Atmospheres -- 5.2.1 Static Protoplanet Atmospheres -- 5.2.2 Enhanced Planetesimal Accretion -- 5.2.3 The Core Accretion Instability -- 5.2.4 Direct Accretion of Disk Gas (and How it Stops) -- 5.2.5 Numerical Simulations of Gas Giant Planet Formation -- 5.3 Direct Formation of Brown Dwarfs and Gas Giants -- 6 Summary -- Acknowledgments -- References -- 2 Dynamical Evolution ofPlanetary Systems -- 1 Introduction -- 2 The Gas-Disk Era -- 2.1 The Formation of the Giant Planets.
2.2 Once Giant Planets are Formed: Type IIMigration and ItsConsequences -- 2.3 Planet-Planet Scattering as the Dominant Orbital ExcitationProcess -- 2.4 A Plausible Evolution of the Four Giant Planets of the SolarSystem -- 3 The Planetesimal-Disk Era -- 3.1 Brief Tutorial of Planetesimal-DrivenMigration -- 3.2 Multi-resonant Planet Configurations and PlanetesimalScattering: The Solar System Case -- 3.3 The Late Heavy Bombardment as a Smoking Gun for a LateInstability of the Giant Planets -- 3.4 The Solar SystemDebris Disk: Are LHBs Common? -- 4 Terrestrial Planets -- 4.1 Linking Giant PlanetMigration to Terrestrial Planet Accretion:The Grand Tack Scenario -- 4.2 Terrestrial Planets in Extrasolar Systems -- 4.3 Terrestrial-Planets Evolution During Giant Planets Instabilities -- 5 Conclusions -- Acknowledgments -- References -- 3 Terrestrial Planets -- 1 Introduction -- 2 Earth -- 3 Venus -- 4 Mars -- 5 Mercury -- 6 Moon -- 7 Summary -- References -- 4 Gas and Ice Giant Interiors -- 1 Introduction -- 2 What Are These Planets Made Of? -- 3 What Kinds of Materials Exist in Planets? -- 4 What Are the Temperatures in Planets? -- 5 How Does One Explain the Heat Flows? -- 5.1 Radioactivity -- 5.2 Secular Cooling -- 5.3 Differentiation -- 6 The Gravity Field -- 7 Magnetic Fields -- 8 Detailed Models -- 9 The Challenges -- References -- 5 Atmospheres of JovianPlanets -- 1 Introduction -- 2 Atmospheric Composition and Structure -- 2.1 Cloud Locations -- 2.1.1 Limitations of Remote Sensing -- 2.2 In Situ Measurements -- 3 Atmospheric Dynamics -- 3.1 Winds -- 3.1.1 Observational Evidence for Seasonal Changes on Uranus and Neptune -- 3.2 Storm Features -- 3.2.1 Jupiter -- 3.2.2 Saturn -- 3.2.3 Uranus and Neptune -- 4 Atmospheric Chemistry -- 4.1 Energy Balance -- 4.2 Case Study: Shoemaker-Levy 9 Impacts on Jupiter -- 5 Future Directions -- 5.1 Unanswered Questions.
5.2 Future Missions to the Outer Solar System -- 5.3 Links to Exoplanets -- Acknowledgments -- References -- 6 Planetary Magnetospheres -- 1 Introduction -- 2 Magnetospheric Principles -- 2.1 Planetary Magnetic Fields -- 2.2 Scales of Planetary Magnetospheres -- 2.3 Plasma Sources -- 2.4 Plasma Dynamics -- 2.4.1 Energetic Particles and Radiation Belts -- 2.4.2 Rotational Flows -- 2.4.3 Global Solar-Wind-Driven Convection -- 2.4.4 Plasmoid Ejection -- 3 Magnetospheres of the Outer Planets -- 3.1 Jupiter -- 3.2 Saturn -- 3.3 Uranus and Neptune -- 4 Small Magnetospheres -- 4.1 Mercury -- 4.2 Ganymede -- 5 Induced Magnetospheres -- 5.1 Venus -- 5.2 Mars -- 5.3 Titan -- 5.4 Io -- 5.5 Pluto and Comets -- 6 Outstanding Questions -- References -- 7 Planetary Rings -- 1 Introduction -- 1.1 Orbital Elements -- 1.2 Roche Limits, Roche Lobes, and Roche Critical Densities -- 1.3 Optical Depth -- 2 Rings by Planetary System -- 2.1 The Rings of Jupiter -- 2.2 The Rings of Saturn -- 2.3 The Rings of Uranus -- 2.4 The Rings of Neptune -- 2.5 Unconfirmed Ring Systems -- 2.5.1 Mars -- 2.5.2 Pluto -- 2.5.3 Rhea and Other Moons -- 2.5.4 Exoplanets -- 3 Rings by Type -- 3.1 Dense Broad Disks -- 3.1.1 Spiral Waves -- 3.1.2 Gap Edges and Moonlet Wakes -- 3.1.3 Radial Structure -- 3.1.4 Self-Gravity Wakes -- 3.1.5 Propellers -- 3.1.6 Spokes and Impacts -- 3.2 Dense Narrow Rings -- 3.3 Narrow Dusty Rings -- 3.4 Diffuse Dusty Rings -- 3.5 Ring Arcs and Azimuthal Clumps -- 3.5.1 Neptune's Adams Ring -- 3.5.2 Jupiter's Main Ring and Other Azimuthal Clumps -- 3.5.3 Saturn's G Ring and Other Moon-Embedded Arcs -- 3.6 Rings as Detectors -- 4 Experimental Rings Science -- 4.1 Numerical Simulations -- 4.2 Physical Experiments and the Coefficient of Restitution -- 4.3 Spectroscopic Ground Truth -- 5 Age and Origin of Ring Systems -- 6 Rings and Other Disks -- Acknowledgments.
References -- 8 An Overviewof theAsteroids andMeteorites -- 1 Introduction -- 2 Dynamics of Asteroids -- 2.1 Gravitational and Nongravitational Forces -- 2.2 Orbital Stability and Lifetime of NEOs -- 2.3 Collisional Evolution and Families -- 2.4 Binary and Multiple Objects -- 2.5 The NEO Hazard -- 2.6 The Nice Model -- 3 Geology and Surfaces of Asteroids -- 3.1 Cratering -- 3.2 Regolith -- 3.3 Processes -- 3.4 Regolith Movement and Mass Wasting -- 3.5 Outgassing -- 3.6 Cohesive Forces -- 4 Asteroidal Interiors and Geophysics -- 4.1 Asteroid Sizes and Densities -- 4.2 Monoliths and Rubble Piles -- 4.3 Rotation Rates and Interior Structure -- 4.4 Strength -- 4.5 Meteoritical Data -- 5 Asteroid and Meteorite Compositions -- 5.1 Isotopic Studies -- 5.2 Asteroidal Compositions from Remote Sensing -- 5.3 Compositions of Specific Objects and Classes: Current Interpretations -- References -- 9 Dusty Planetary Systems -- 1 Part I: Solar and Extrasolar Debris Disks -- 1.1 Debris Disks Are Evidence of the Presence of Extrasolar Planetesimals -- 1.2 The Solar System Debris Disk -- 1.2.1 Debris Dust in the Inner Solar System -- Zodiacal Dust -- Dust Particles Falling on Earth -- In Situ Dust Detections in the Inner Solar System -- 1.2.2 Debris Dust in the Outer Solar System -- 1.2.3 Evolution of the Dust Production Rate in the Solar System -- 1.3 Extrasolar Debris Disks -- 1.3.1 Debris Disk Frequency -- 1.3.2 Debris Disk Evolution -- 1.3.3 Debris Disk Structure and Inferred Planetesimal Location -- Inner Gaps -- Degeneracy of the SED Analysis -- Other Structural Features Revealed by Spatially Resolved Observations -- Debris Disk Structure Can Unveil the Presence of Planets -- 1.3.4 Planet-Debris Disk Relation -- 1.3.5 Debris Disk Composition -- 1.4 Future Prospects in Debris Disks Studies -- 2 Part II: Physical Processes Acting on Dust.
2.1 Radiation and Stellar Wind Forces -- 2.1.1 Radiation Pressure -- 2.1.2 Poynting-Robertson Drag -- 2.1.3 Stellar Wind Forces -- 2.1.4 Effect of Radiation Forces on the Dust Dynamics -- 2.1.5 Effect of Radiation Forces on the Dust Spatial Distribution -- 2.2 Gravitational Forces in the Presence of Planets -- 2.2.1 Resonant Perturbations -- 2.2.2 Gravitational Scattering -- 2.2.3 Secular Perturbations -- 2.2.4 Effect of Gravitational Forces on the Dust Spatial Distribution -- Resonant Perturbations -- Gravitational Scattering -- Secular Perturbations -- Debris Disk Structure Can Unveil the Presence of Planets -- 2.3 Collisions -- 2.3.1 Collisional Lifetimes -- 2.3.2 Effect of Collisions on the Dust Size Distribution -- 2.3.3 Effect of Collisions on the Dust Spatial Distribution -- 2.3.4 Effect of Collisions on the Dust Disk Evolution -- 2.4 Other Physical Processes -- 2.4.1 Dust Sublimation -- 2.4.2 Lorentz Force -- 2.4.3 Sputtering -- 2.5 Open Questions -- References -- 10 Exoplanet DetectionMethods -- 1 Basic Principles of Planet Detection -- 1.1 Spectroscopic Binaries and Orbital Elements -- 1.2 Radial Velocities -- 1.3 Astrometry -- 1.4 Imaging -- 1.5 Transits -- 1.6 Gravitational Microlensing -- 1.7 Timing -- 2 The Magnitude of the Problem -- 2.1 Radial Velocities -- 2.2 Astrometry -- 2.3 Imaging -- 2.4 Transits -- 2.5 Microlensing -- 2.6 Timing -- 3 Comparisons of the Methods -- 3.1 Sensitivities of the Methods -- 3.2 Habitable Planets -- 4 Early Milestones in the Detection of Exoplanets -- 4.1 Van de Kamp and Barnard's Star -- 4.2 PSR 1257+12 and the Pulsar Planets -- 4.3 Early Radial Velocity Work -- 4.3.1 Campbell and Walker's Survey and gamma Cep Ab -- 4.3.2 Latham's Survey and HD 114762 b -- 4.3.3 Marcy and Butler's Iodine Survey -- 4.3.4 Hatzes and Cochran's Survey and beta Gem b -- 4.3.5 Mayor and Queloz and 51 Pegasi b.
4.4 The First Planetary Transit: HD 209458b.
Sommario/riassunto: This is volume 3 of Planets, Stars and Stellar Systems, a six-volume compendium of modern astronomical research covering subjects of key interest to the main fields of contemporary astronomy. This volume on “Solar and Stellar Planetary Systems” edited by Linda French and Paul Kalas presents accessible review chapters From Disks to Planets, Dynamical Evolution of Planetary Systems, The Terrestrial Planets, Gas and Ice Giant Interiors, Atmospheres of Jovian Planets, Planetary Magnetospheres, Planetary Rings, An Overview of the Asteroids and Meteorites, Dusty Planetary Systems and Exoplanet Detection Methods. All chapters of the handbook were written by practicing professionals. They include sufficient background material and references to the current literature to allow readers to learn enough about a specialty within astronomy, astrophysics and cosmology to get started on their own practical research projects. In the spirit of the series Stars and Stellar Systems published by Chicago University Press in the 1960s and 1970s, each chapter of Planets, Stars and Stellar Systems can stand on its own as a fundamental review of its respective sub-discipline, and each volume can be used as a textbook or recommended reference work for advanced undergraduate or postgraduate courses. Advanced students and professional astronomers in their roles as both lecturers and researchers will welcome Planets, Stars and Stellar Systems as a comprehensive and pedagogical reference work on astronomy, astrophysics and cosmology.
Titolo autorizzato: Planets, Stars and Stellar Systems  Visualizza cluster
ISBN: 94-007-5606-2
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910438113103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui