Vai al contenuto principale della pagina

Statistical Learning Theory and Stochastic Optimization : Ecole d'Eté de Probabilités de Saint-Flour XXXI - 2001 / / by Olivier Catoni ; edited by Jean Picard



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Catoni Olivier Visualizza persona
Titolo: Statistical Learning Theory and Stochastic Optimization : Ecole d'Eté de Probabilités de Saint-Flour XXXI - 2001 / / by Olivier Catoni ; edited by Jean Picard Visualizza cluster
Pubblicazione: Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2004
Edizione: 1st ed. 2004.
Descrizione fisica: 1 online resource (VIII, 284 p.)
Disciplina: 519.5
Soggetto topico: Probabilities
Statistics
Mathematical optimization
Artificial intelligence
Computer science - Mathematics
Numerical analysis
Probability Theory
Statistical Theory and Methods
Optimization
Artificial Intelligence
Mathematical Applications in Computer Science
Numerical Analysis
Persona (resp. second.): PicardJean
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Universal Lossless Data Compression -- Links Between Data Compression and Statistical Estimation -- Non Cumulated Mean Risk -- Gibbs Estimators -- Randomized Estimators and Empirical Complexity -- Deviation Inequalities -- Markov Chains with Exponential Transitions -- References -- Index.
Sommario/riassunto: Statistical learning theory is aimed at analyzing complex data with necessarily approximate models. This book is intended for an audience with a graduate background in probability theory and statistics. It will be useful to any reader wondering why it may be a good idea, to use as is often done in practice a notoriously "wrong'' (i.e. over-simplified) model to predict, estimate or classify. This point of view takes its roots in three fields: information theory, statistical mechanics, and PAC-Bayesian theorems. Results on the large deviations of trajectories of Markov chains with rare transitions are also included. They are meant to provide a better understanding of stochastic optimization algorithms of common use in computing estimators. The author focuses on non-asymptotic bounds of the statistical risk, allowing one to choose adaptively between rich and structured families of models and corresponding estimators. Two mathematical objects pervade the book: entropy and Gibbs measures. The goal is to show how to turn them into versatile and efficient technical tools, that will stimulate further studies and results.
Titolo autorizzato: Statistical learning theory and stochastic optimization  Visualizza cluster
ISBN: 3-540-44507-2
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910144617903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: École d'Été de Probabilités de Saint-Flour ; ; 1851