Vai al contenuto principale della pagina

Multiple Classifier Systems [[electronic resource] ] : 9th International Workshop, MCS 2010, Cairo, Egypt, April 7-9, 2010, Proceedings / / edited by Neamat El Gayar, Josef Kittler, Fabio Roli



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Multiple Classifier Systems [[electronic resource] ] : 9th International Workshop, MCS 2010, Cairo, Egypt, April 7-9, 2010, Proceedings / / edited by Neamat El Gayar, Josef Kittler, Fabio Roli Visualizza cluster
Pubblicazione: Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2010
Edizione: 1st ed. 2010.
Descrizione fisica: 1 online resource (X, 328 p. 77 illus.)
Disciplina: 006.3
Soggetto topico: Artificial intelligence
Application software
Pattern recognition systems
Algorithms
Computer science
Database management
Artificial Intelligence
Computer and Information Systems Applications
Automated Pattern Recognition
Theory of Computation
Database Management
Persona (resp. second.): El GayarNeamat
KittlerJosef
RoliFabio
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Classifier Ensembles(I) -- Weighted Bagging for Graph Based One-Class Classifiers -- Improving Multilabel Classification Performance by Using Ensemble of Multi-label Classifiers -- New Feature Splitting Criteria for Co-training Using Genetic Algorithm Optimization -- Incremental Learning of New Classes in Unbalanced Datasets: Learn?+?+?.UDNC -- Tomographic Considerations in Ensemble Bias/Variance Decomposition -- Choosing Parameters for Random Subspace Ensembles for fMRI Classification -- Classifier Ensembles(II) -- An Experimental Study on Ensembles of Functional Trees -- Multiple Classifier Systems under Attack -- SOCIAL: Self-Organizing ClassIfier ensemble for Adversarial Learning -- Unsupervised Change-Detection in Retinal Images by a Multiple-Classifier Approach -- A Double Pruning Algorithm for Classification Ensembles -- Estimation of the Number of Clusters Using Multiple Clustering Validity Indices -- Classifier Diversity -- “Good” and “Bad” Diversity in Majority Vote Ensembles -- Multi-information Ensemble Diversity -- Classifier Selection -- Dynamic Selection of Ensembles of Classifiers Using Contextual Information -- Selecting Structural Base Classifiers for Graph-Based Multiple Classifier Systems -- Combining Multiple Kernels -- A Support Kernel Machine for Supervised Selective Combining of Diverse Pattern-Recognition Modalities -- Combining Multiple Kernels by Augmenting the Kernel Matrix -- Boosting and Bootstrapping -- Class-Separability Weighting and Bootstrapping in Error Correcting Output Code Ensembles -- Boosted Geometry-Based Ensembles -- Online Non-stationary Boosting -- Handwriting Recognition -- Combining Neural Networks to Improve Performance of Handwritten Keyword Spotting -- Combining Committee-Based Semi-supervised and Active Learning and Its Application to Handwritten Digits Recognition -- Using Diversity in Classifier Set Selection for Arabic Handwritten Recognition -- Applications -- Forecast Combination Strategies for Handling Structural Breaks for Time Series Forecasting -- A Multiple Classifier System for Classification of LIDAR Remote Sensing Data Using Multi-class SVM -- A Multi-Classifier System for Off-Line Signature Verification Based on Dissimilarity Representation -- A Multi-objective Sequential Ensemble for Cluster Structure Analysis and Visualization and Application to Gene Expression -- Combining 2D and 3D Features to Classify Protein Mutants in HeLa Cells -- An Experimental Comparison of Hierarchical Bayes and True Path Rule Ensembles for Protein Function Prediction -- Recognizing Combinations of Facial Action Units with Different Intensity Using a Mixture of Hidden Markov Models and Neural Network -- Invited Papers -- Some Thoughts at the Interface of Ensemble Methods and Feature Selection -- Multiple Classifier Systems for the Recogonition of Human Emotions -- Erratum -- Erratum.
Titolo autorizzato: Multiple Classifier Systems  Visualizza cluster
ISBN: 1-280-38597-9
9786613563897
3-642-12127-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996465286003316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Theoretical Computer Science and General Issues, . 2512-2029 ; ; 5997