Vai al contenuto principale della pagina
| Autore: |
Dittrich Walter
|
| Titolo: |
Classical and Quantum Dynamics [[electronic resource] ] : From Classical Paths to Path Integrals / / by Walter Dittrich, Martin Reuter
|
| Pubblicazione: | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
| Edizione: | 6th ed. 2020. |
| Descrizione fisica: | 1 online resource (X, 563 p. 307 illus.) |
| Disciplina: | 530.12 |
| Soggetto topico: | Quantum physics |
| Continuum physics | |
| Mathematical physics | |
| Nuclear physics | |
| Statistical physics | |
| Quantum Physics | |
| Classical and Continuum Physics | |
| Mathematical Applications in the Physical Sciences | |
| Particle and Nuclear Physics | |
| Statistical Physics and Dynamical Systems | |
| Persona (resp. second.): | ReuterMartin |
| Nota di bibliografia: | Includes bibliographical references and index. |
| Nota di contenuto: | Introduction -- The Action Principles in Mechanics -- The Action Principle in Classical Electrodynamics -- Application of the Action Principles -- Jacobi Fields, Conjugate Points.-Canonical Transformations -- The Hamilton–Jacobi Equation -- Action-Angle Variables -- The Adiabatic Invariance of the Action Variables -- Time-Independent Canonical Perturbation Theory -- Canonical Perturbation Theory with Several Degrees of Freedom -- Canonical Adiabatic Theory -- Removal of Resonances -- Superconvergent Perturbation Theory, KAM Theorem -- Poincaré Surface of Sections, Mappings -- The KAM Theorem -- Fundamental Principles of Quantum Mechanics -- Functional Derivative Approach -- Examples for Calculating Path Integrals -- Direct Evaluation of Path Integrals -- Linear Oscillator with Time-Dependent Frequency -- Propagators for Particles in an External Magnetic Field -- Simple Applications of Propagator Functions -- The WKB Approximation -- Computing the trace -- Partition Function for the Harmonic Oscillator -- Introduction to Homotopy Theory -- Classical Chern–Simons Mechanics -- Semiclassical Quantization -- The “Maslov Anomaly” for the Harmonic Oscillator.-Maslov Anomaly and the Morse Index Theorem -- Berry’s Phase -- Classical Geometric Phases: Foucault and Euler -- Berry Phase and Parametric Harmonic Oscillator -- Topological Phases in Planar Electrodynamics -- Path Integral Formulation of Quantum Electrodynamics -- Particle in Harmonic E-Field E(t) = Esinw0t; Schwinger-Fock Proper-Time Method -- The Usefulness of Lie Brackets: From Classical and Quantum Mechanics to Quantum Electrodynamics -- Green’s Function of a Spin-1/2 Particle in a Constant External Magnetic Field -- One-Loop Effective Lagrangian in QED -- On Riemann’s Ideas on Space and Schwinger’s Treatment of Low-Energy Pion-Nucleon Physics -- The Non-Abelian Vector Gauge Particle p -- Riemann’s Result and Consequences for Physics and Philosophy. |
| Sommario/riassunto: | Graduate students seeking to become familiar with advanced computational strategies in classical and quantum dynamics will find in this book both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, to name just a few topics. Well-chosen and detailed examples illustrate perturbation theory, canonical transformations and the action principle, and demonstrate the usage of path integrals. The sixth edition has been enlarged to include the Heisenberg-Euler Lagrangian, Schwinger’s source theory treatment of the low-energy π-ρ-N physics and general relativity, where Riemann’s (Einstein’s) ideas on space and time and their philosophical implications are discussed. . |
| Titolo autorizzato: | Classical and Quantum Dynamics ![]() |
| ISBN: | 3-030-36786-X |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 996418172303316 |
| Lo trovi qui: | Univ. di Salerno |
| Opac: | Controlla la disponibilità qui |