Vai al contenuto principale della pagina
| Autore: |
Zhang Yuning
|
| Titolo: |
Advanced Signal Processing : Decomposition, Entropy, and Machine Learning / / by Yuning Zhang, Chenxin Yang, Peng Luo, Heng Zhang
|
| Pubblicazione: | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025 |
| Edizione: | 1st ed. 2025. |
| Descrizione fisica: | 1 online resource (93 pages) |
| Disciplina: | 321.319 |
| Soggetto topico: | Electric power distribution |
| Water-power | |
| Electrical engineering | |
| Machine learning | |
| Energy Grids and Networks | |
| Hydroenergy | |
| Electrical and Electronic Engineering | |
| Machine Learning | |
| Nota di contenuto: | Introduction -- Signal decomposition methods -- Entropy analysis methods -- Machine learning methods -- Signal denoising applications -- Pattern recognition applications -- Conclusion. |
| Sommario/riassunto: | This brief explores advanced signal processing techniques, focusing on signal decomposition, entropy analysis, and machine learning, with applications in energy-related fields such as hydroturbines, wind turbines, and power grids. It provides a detailed overview of methods for signal denoising and pattern recognition, covering techniques like wavelet transform, empirical mode decomposition, permutation entropy, and deep learning models. Through real-world engineering case studies, the book demonstrates how these methods enhance data analysis, improve fault detection, and optimize system performance, making it a valuable resource for researchers, engineers, and students in signal processing and mechanical engineering. |
| Titolo autorizzato: | Advanced Signal Processing ![]() |
| ISBN: | 3-032-11854-9 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9911049216703321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |