Vai al contenuto principale della pagina

Advanced Signal Processing : Decomposition, Entropy, and Machine Learning / / by Yuning Zhang, Chenxin Yang, Peng Luo, Heng Zhang



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Zhang Yuning Visualizza persona
Titolo: Advanced Signal Processing : Decomposition, Entropy, and Machine Learning / / by Yuning Zhang, Chenxin Yang, Peng Luo, Heng Zhang Visualizza cluster
Pubblicazione: Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Edizione: 1st ed. 2025.
Descrizione fisica: 1 online resource (93 pages)
Disciplina: 321.319
Soggetto topico: Electric power distribution
Water-power
Electrical engineering
Machine learning
Energy Grids and Networks
Hydroenergy
Electrical and Electronic Engineering
Machine Learning
Nota di contenuto: Introduction -- Signal decomposition methods -- Entropy analysis methods -- Machine learning methods -- Signal denoising applications -- Pattern recognition applications -- Conclusion.
Sommario/riassunto: This brief explores advanced signal processing techniques, focusing on signal decomposition, entropy analysis, and machine learning, with applications in energy-related fields such as hydroturbines, wind turbines, and power grids. It provides a detailed overview of methods for signal denoising and pattern recognition, covering techniques like wavelet transform, empirical mode decomposition, permutation entropy, and deep learning models. Through real-world engineering case studies, the book demonstrates how these methods enhance data analysis, improve fault detection, and optimize system performance, making it a valuable resource for researchers, engineers, and students in signal processing and mechanical engineering.
Titolo autorizzato: Advanced Signal Processing  Visualizza cluster
ISBN: 3-032-11854-9
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9911049216703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: SpringerBriefs in Energy, . 2191-5539