Vai al contenuto principale della pagina

Variational and Information Flows in Machine Learning and Optimal Transport / / by Wuchen Li, Bernhard Schmitzer, Gabriele Steidl, François-Xavier Vialard, Christian Wald



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Li Wuchen Visualizza persona
Titolo: Variational and Information Flows in Machine Learning and Optimal Transport / / by Wuchen Li, Bernhard Schmitzer, Gabriele Steidl, François-Xavier Vialard, Christian Wald Visualizza cluster
Pubblicazione: Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2025
Edizione: 1st ed. 2025.
Descrizione fisica: 1 online resource (433 pages)
Disciplina: 515.35
Soggetto topico: Differential equations
Mathematical optimization
Calculus of variations
Differential Equations
Calculus of Variations and Optimization
Altri autori: SchmitzerBernhard  
SteidlGabriele  
VialardFrançois-Xavier  
WaldChristian  
Nota di contenuto: - 1. A Dynamic Perspective of Optimal Transport -- 2. A Geometric Perspective on Diffeomorphic and Optimal Transport Flows and Their Applications -- 3. Wasserstein Dynamics in Mathematical Data Sciences -- 4. Flow Matching: Markov Kernels, Stochastic Processes and Transport Plans.
Sommario/riassunto: This book is based on lectures given at the Mathematisches Forschungsinstitut Oberwolfach on “Computational Variational Flows in Machine Learning and Optimal Transport”. Variational and stochastic flows on measure spaces are ubiquitous in machine learning and generative modeling. Optimal transport and diffeomorphic flows provide powerful frameworks to analyze such trajectories of distributions with elegant notions from differential geometry, such as geodesics, gradient and Hamiltonian flows. Recently, mean field control and mean field games offered a general optimal control variational view on learning problems. The four independent chapters in this book address the question of how the presented tools lead us to better understanding and further development of machine learning and generative models. .
Titolo autorizzato: Variational and Information Flows in Machine Learning and Optimal Transport  Visualizza cluster
ISBN: 3-031-92731-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9911015963203321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Oberwolfach Seminars, . 2296-5041 ; ; 56