Vai al contenuto principale della pagina

Heavy Metal Toxicity and Tolerance in Plants : A Biological, Omics, and Genetic Engineering Approach



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Hossain Mohammad Anwar Visualizza persona
Titolo: Heavy Metal Toxicity and Tolerance in Plants : A Biological, Omics, and Genetic Engineering Approach Visualizza cluster
Pubblicazione: Newark : , : John Wiley & Sons, Incorporated, , 2023
©2023
Edizione: 1st ed.
Descrizione fisica: 1 online resource (643 pages)
Soggetto topico: Plants - Effect of heavy metals on
Heavy metals
Altri autori: HossainA. K. M. Zakir  
BourgerieSylvain  
FujitaMasayuki  
DhankherOm Parkash  
HarisParvez  
Nota di contenuto: Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Editor Biographies -- Chapter 1 Plant Response and Tolerance to Heavy Metal Toxicity: An Overview of Chemical Biology, Omics Studies, and Genetic Engineering -- 1.1 Introduction -- 1.2 Plant-Metal Interaction -- 1.3 Effect of Heavy Metals on Plants -- 1.3.1 Morphoanatomical Responses -- 1.3.2 Physiological Responses -- 1.3.3 Biochemical Responses -- 1.3.4 Molecular Responses -- 1.4 Mechanisms to Tolerate Heavy Metal Toxicity -- 1.4.1 Avoidance -- 1.4.2 Sequestration -- 1.5 Important Strategies for the Enhancement of Metal Tolerance -- 1.5.1 Omics -- 1.5.2 Genetic Engineering -- 1.6 Conclusion and Future Prospects -- References -- Chapter 2 Advanced Techniques in Omics Research in Relation to Heavy Metal/Metalloid Toxicity and Tolerance in Plants -- 2.1 Introduction -- 2.2 An Overview of Plant Responses to Heavy Metal Toxicity -- 2.3 How the Integration of Multi-omics Data Sets Helps in Studying the Heavy Metal Stress Responses and Tolerance Mechanisms? -- 2.3.1 The Contribution of State-of-the-Art Genomics-Assisted Breeding -- 2.3.2 Transcriptomics -- 2.3.3 Proteomics -- 2.3.4 Metabolomics -- 2.3.5 miRNAomics -- 2.3.6 Phenomics -- 2.4 Conclusion and Perspectives -- References -- Chapter 3 Heavy Metals/Metalloids in Food Crops and Their Implications for Human Health -- 3.1 Introduction -- 3.2 Arsenic -- 3.2.1 Sources and Forms -- 3.2.2 Food Chain Contamination -- 3.2.3 Pharmacokinetic Processes -- 3.2.4 Toxicology Processes -- 3.2.5 Remedial Options -- 3.3 Cadmium -- 3.3.1 Sources and Forms -- 3.3.2 Food Chain Contamination -- 3.3.3 Pharmacokinetic Processes -- 3.3.4 Toxicology Processes -- 3.3.5 Remedial Options -- 3.4 Lead -- 3.4.1 Sources and Forms -- 3.4.2 Food Chain Contamination -- 3.4.3 Pharmacokinetic Processes -- 3.4.4 Toxicology Processes.
3.4.5 Remedial Options -- 3.5 Chromium -- 3.5.1 Sources and Forms -- 3.5.2 Food Chain Contamination -- 3.5.3 Pharmacokinetic Processes -- 3.5.4 Toxicology Processes -- 3.5.5 Remedial Options -- 3.6 Mercury -- 3.6.1 Sources and Forms -- 3.6.2 Food Chain Contamination -- 3.6.3 Pharmacokinetic Processes -- 3.6.4 Toxicology Processes -- 3.6.5 Remedial Options -- 3.7 Conclusions -- References -- Chapter 4 Aluminum Stress Tolerance in Plants: Insights from Omics Approaches -- 4.1 Introduction -- 4.2 Exploration of Al Tolerance QTLs -- 4.3 Unraveling the Genetic Architecture of Al Tolerance from Natural Variation -- 4.4 Identification of Novel Al Tolerance Genes Through Genome-Wide Association Studies -- 4.5 Exploring Expression Level Polymorphisms to Identify Upstream Al Signaling -- 4.6 Comparative Transcriptome Analyses Identify Novel Al Tolerance Genes -- 4.7 Identification of Al Tolerance Genes from Proteomics -- 4.8 Conclusion and Future Perspectives -- References -- Chapter 5 Breeding Approaches for Aluminum Toxicity Tolerance in Rice and Wheat -- 5.1 Introduction -- 5.2 Plant Signaling -- 5.3 Rice Genetic Mapping -- 5.3.1 Linkage Mapping -- 5.3.2 Association Mapping -- 5.4 Root Transcriptome -- 5.5 Wheat Genetic Mapping -- 5.5.1 Wheat MATE Gene Family -- 5.6 Wheat Proteomics -- 5.7 Conclusion -- References -- Chapter 6 Chromium Toxicity and Tolerance in Plants: Insights from Omics Studies -- 6.1 Introduction -- 6.2 Chromium Sources and Bioavailability -- 6.3 Chromium Uptake, Translocation, and Sub-cellular Distribution in Plants -- 6.4 Detoxification Mechanisms for Cr -- 6.5 Omics Approaches Used by Plants to Combat Cr Toxicity -- 6.5.1 Transcriptomics -- 6.5.2 Chromium-Induced miRNAs in Plants -- 6.5.3 Metabolomics -- 6.5.4 Proteomics -- 6.6 Phytoremediation of Cr Metal by Plants -- 6.6.1 Phytoremediation Approach for Cr Detoxification.
6.6.2 Other Strategies Involved in Cr Remediation -- 6.6.3 Phytostabilization/Phytoextraction for Cr Decontamination -- 6.7 Conclusion -- References -- Chapter 7 Manganese Toxicity and Tolerance in Photosynthetic Organisms and Breeding Strategy for Improving Manganese Tolerance in Crop Plants: Physiological and Omics Approach Perspectives -- 7.1 Introduction -- 7.2 The Change in Mn Availability Within the Soil -- 7.3 Why Should We Consider the Occurrence of Mn Toxicity in Plants? Possible Threats of Mn Toxicity in Agricultural Land -- 7.4 The History of Mn Toxicity -- 7.5 The Features of Mn Toxicity in Terrestrial Plants and Possible Molecular Mechanisms -- 7.5.1 The Mechanisms of Emergence of Brownish Patchy Spots in Leaves: The Apoplastic Mn Toxicity -- 7.5.2 The Mechanisms of Foliar Chlorosis Under Excess Mn: Symplastic Mn Toxicity -- 7.6 Breeding Strategy for Overcoming the Future Threat of Excess Mn Conditions -- 7.6.1 Limiting Mn Absorption from Soil to Root -- 7.6.2 Sequestration of Mn from Cytosol to the Vacuole or Apoplast -- 7.6.3 Maintenance of Auxin Homeostasis -- 7.6.4 The Reinforcement of Silicon Uptake and Its Distribution -- 7.7 Conclusion and Future Prospects -- Acknowledgments -- References -- Chapter 8 Iron Excess Toxicity and Tolerance in Crop Plants: Insights from Omics Studies -- 8.1 Iron Uptake and Translocation Mechanism in Plants -- 8.1.1 Importance of Iron in Living Organisms -- 8.1.2 Fe Acquisition Systems in Plants -- 8.1.3 Fe Translocation Mechanisms in Plants -- 8.2 Fe Excess Toxicity in Plants -- 8.2.1 Fe Excess Toxicity in Global Agriculture -- 8.2.2 Causes of Fe Excess Toxicity in Soils and Its Interaction with Plants -- 8.2.3 Effects of Fe Excess Toxicity on Plant Growth -- 8.3 Crop Defense Mechanisms Against Excess Fe and Genes Regulating Fe Excess -- 8.3.1 Defense I: Fe Exclusion from Roots.
8.3.2 Defense II: Fe Retention in Roots and Suppression of Fe Translocation to Shoots -- 8.3.3 Defense III: Fe Compartmentalization in Shoots -- 8.3.4 Defense IV: ROS Detoxification -- 8.4 Research Outlook on Fe Excess Response of Plants -- 8.4.1 Regulation of Fe homeostasis in Plants in Response to Fe Excess Stress -- 8.4.2 Transcription Factors -- 8.4.3 Cis-Regulatory Elements -- 8.5 Conclusion and Future Prospects -- Acknowledgments -- Author Contributions -- Disclosures -- References -- Chapter 9 Molecular Breeding for Iron Toxicity Tolerance in Rice (Oryza sativa L.) -- 9.1 Introduction -- 9.2 Role of Iron in Plants and Rice -- 9.3 Iron Toxicity and Its Effects on Rice -- 9.4 Iron Toxicity Tolerance Mechanisms in Rice Plants -- 9.4.1 Fe Exclusion from Roots -- 9.4.2 Fe Retention in Roots and Suppression of Fe Translocation to Shoots -- 9.4.3 Fe Compartmentalization in Shoots -- 9.4.4 ROS Detoxification -- 9.4.5 Candidate Genes Involved in the Mechanisms of Fe Toxicity -- 9.4.6 Genetic Variants for Iron Toxicity Tolerance in Rice Germplasm -- 9.5 Molecular Breeding for Fe Toxicity Tolerance in Rice -- 9.6 Conclusion -- References -- Chapter 10 Cobalt Induced Toxicity and Tolerance in Plants: Insights from Omics Approaches -- 10.1 Introduction -- 10.2 Plant Response to Cobalt Stress -- 10.2.1 Uptake and Translocation of Cobalt in Plants -- 10.3 Cobalt-Induced ROS Generation and Their Damaging Effects -- 10.3.1 ROS-Induced Lipid Peroxidation -- 10.3.2 ROS-Induced Damage to Genetic Material -- 10.4 Cobalt-Induced Plant Antioxidant Defense System -- 10.4.1 Enzymatic Antioxidants -- 10.4.2 Nonenzymatic Antioxidants -- 10.5 Omics Approaches in Cobalt Stress Tolerance -- 10.5.1 Transcriptomic -- 10.5.2 Metabolomics -- 10.5.3 Proteomics -- 10.6 Conclusion and Future Prospects -- Acknowledgments -- References.
Chapter 11 Nickel Toxicity and Tolerance in Plants -- 11.1 Introduction -- 11.2 Sources of Ni -- 11.2.1 Natural Sources of Ni -- 11.2.2 Anthropogenic Sources of Ni -- 11.3 Role of Ni in Plants -- 11.4 Ni Uptake and Accumulation in Plants -- 11.5 Ni Toxicity in Plants -- 11.5.1 Growth Inhibition -- 11.5.2 Photosynthesis Inhibition of Ni -- 11.5.3 Induction of Oxidative Stress -- 11.6 Tolerance Mechanisms -- 11.7 Omics Approaches in Ni Stress Tolerance -- 11.7.1 Transcriptomics -- 11.7.2 Proteomics -- 11.7.3 Metabolomics -- 11.8 Conclusion -- References -- Chapter 12 Copper Toxicity and Tolerance in Plants: Insights from Omics Studies -- 12.1 Introduction -- 12.2 Copper in Plants -- 12.2.1 Functions of Copper -- 12.2.2 Uptake, Transport, Distribution, and Remobilization Mechanisms -- 12.2.3 Deficient, Sufficient, and Toxic Levels of Copper in Plants -- 12.2.4 Copper Sources: Fertilizers and Fungicides -- 12.3 Omics Approaches for Cu Responses and Tolerance in Plants -- 12.3.1 Genomics -- 12.3.2 Transcriptomics -- 12.3.3 Proteomics -- 12.3.4 Metabolomics -- 12.3.5 miRNAomics -- 12.4 Concluding Remarks -- Acknowledgments -- References -- Chapter 13 Zinc Toxicity and Tolerance in Plants: Insights from Omics Studies -- 13.1 Introduction -- 13.1.1 Zinc Uptake and Translocation Mechanisms in Plants -- 13.1.2 Transporters and Metal-Binding Compounds Involved in Zinc Homeostasis -- 13.2 Impact of Excess Zinc on Physio-genetics Aspects of Plants -- 13.2.1 Effect of Zinc Toxicity on Seed Germination and Growth of Plants -- 13.2.2 Effect of Zinc Toxicity on Oxidative Metabolism in Plants -- 13.2.3 Effect of Zn Toxicity on Physiology and Biochemistry of Plants -- 13.3 Plants Stress Adaptation to Zinc Toxicity -- 13.4 Multi-omics Approaches for Zinc Toxicity and Tolerance in Plants -- 13.4.1 Genomics and Metabolomics -- 13.4.2 Proteomics and Transcriptomics.
13.4.3 miRNA Omics and CRISPR/Cas9 System.
Sommario/riassunto: This book, 'Heavy Metal Toxicity and Tolerance in Plants,' offers a comprehensive exploration of the impact of heavy metals on plant physiology and biochemistry. Edited by a team of international experts, it delves into the interactions between plants and heavy metals, highlighting the physiological, biochemical, and molecular responses of plants. The book presents strategies for enhancing metal tolerance using advanced techniques such as omics and genetic engineering. It also addresses the implications of heavy metal contamination in food crops and human health. Intended for researchers, students, and professionals in plant sciences and environmental studies, this work aims to provide insights into plant resilience and adaptation mechanisms in the face of heavy metal stress.
Titolo autorizzato: Heavy Metal Toxicity and Tolerance in Plants  Visualizza cluster
ISBN: 9781119906506
1119906504
9781119906476
1119906474
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910877326603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui