Vai al contenuto principale della pagina

Recovery of Values from Low-Grade and Complex Minerals : Development of Sustainable Processes



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Fosso-Kankeu Elvis Visualizza persona
Titolo: Recovery of Values from Low-Grade and Complex Minerals : Development of Sustainable Processes Visualizza cluster
Pubblicazione: Newark : , : John Wiley & Sons, Incorporated, , 2024
©2024
Edizione: 1st ed.
Descrizione fisica: 1 online resource (273 pages)
Altri autori: MambaBhekie B  
Mulaba-BafubiandiAntoine F  
Nota di contenuto: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Optimization of the Mechanical Comminution - The Crushing Stage -- 1.1 Introduction -- 1.2 The Role of Crushers -- 1.2.1 Types of Crushers and Their Effect -- 1.2.1.1 Jaw Crusher -- 1.2.1.2 Gyratory Crusher -- 1.2.1.3 Impact Crusher -- 1.2.1.4 Cone Crusher -- 1.2.1.5 HPGR Crusher -- 1.2.2 Gaps and Future Perspective -- 1.3 Conclusion -- References -- Chapter 2 Challenges Related to the Flotation Process of Complex Phosphate Ores -- Abbreviations -- 2.1 Introduction to the Geology of Complex Phosphate Ores -- 2.2 Phosphate Rock Beneficiation Processes -- 2.2.1 Principal and Sub-Ordinate Minerals (Ore Mineralogy) -- 2.3 Froth Flotation of Sedimentary Phosphate Ore -- 2.3.1 Collectors Used in Phosphate Rock Flotation -- 2.3.2 Depressants Used in Phosphate Rock Flotation -- 2.3.3 Frothers Used in Phosphate Rock Flotation -- 2.3.4 Effect of pH on Flotation of Phosphate Ores -- 2.3.5 Equipment Used in Phosphate Rock Flotation -- 2.4 Challenges Facing Flotation of Phosphate Rock -- 2.4.1 Water Quality -- 2.4.2 Mineralogy of the Phosphate Rock -- 2.4.3 Particle Size Distribution Challenges -- 2.5 Future Research Directions -- 2.6 Conclusion -- References -- Chapter 3 Increasing Ionic Strength and Oxyhydroxo Species in Process Water on the Floatability of Chalcopyrite and Pentlandite for a Selected Cu-Ni Bearing Ore Flotation -- 3.1 Introduction -- 3.2 Materials and Methods -- 3.2.1 Three-Phase Batch Flotation -- 3.2.2 Two-Phase Batch Flotation -- 3.2.3 Two-Phase Froth Column -- 3.3 Results and Discussion -- 3.3.1 Solids and Water Recoveries from a Three-Phase Batch Cell -- 3.2 Cu and Ni Recoveries and Grades from a Three-Phase Batch Cell -- 3.3 Water Recoveries from a Two-Phase Batch Float Cell -- 3.4 Froth Column Studies from a Two-Froth Column -- Conclusions -- Acknowledgments.
References -- Chapter 4 Relating the Flotation Response of Pyrrhotite to the Adsorption of Sodium Carboxymethyl Cellulose and Sodium Isobutyl Xanthate on its Surface in Process Water of a Degrading Quality -- 4.1 Introduction -- 4.2 Experimental Methods -- 4.2.1 Synthetic Plant Water Preparation -- 4.2.2 Collector Preparation -- 4.2.3 Depressant Preparation -- 4.2.4 Ore Preparation and Milling -- 4.2.5 Batch Flotation -- 4.2.6 Sample Assays/Analyses -- 4.2.7 Pyrrhotite Sample Preparation -- 4.2.8 Bubble-Particle Attachment -- 4.2.9 Microflotation Tests -- 4.2.10 Zeta Potential Measurements -- 4.2.11 Adsorption of Sodium Isobutyl Xanthate -- 4.2.12 Adsorption of Sodium Carboxymethyl Cellulose -- 4.3 Results and Discussion -- 4.3.1 Batch Flotation of a Cu-Ni-PGM Ore: Effect of the Ionic Strength of SPW and CMC Dosage on the Behavior of Pyrrhotite -- 4.3.2 Microflotation of Pyrrhotite in Increasing Ionic Strength of SPW and CMC Dosage -- 4.3.3 Bubble-Particle Attachment of Pyrrhotite in Increasing Ionic Strength of SPW -- 4.3.4 Adsorption of Sodium Isobutyl Xanthate onto Pyrrhotite in Increasing Ionic Strength of SPW -- 4.3.5 Adsorption of Carboxy Methyl Cellulose onto Pyrrhotite in Increasing Ionic Strength of SPW -- 4.3.6 Zeta Potential of Pyrrhotite in Increasing Ionic Strength of SPW -- 4.3.7 Concluding Discussion -- 4.4 Conclusions -- Acknowledgments -- References -- Chapter 5 Simulated Short Cycle Water Recirculation on the Flotation Performance of a UG2 Cu-Ni-PGM Ore -- 5.1 Introduction -- 5.2 Materials and Methods -- 5.2.1 UG2 Ore Mineralogy -- 5.2.2 Plant Water Preparation -- 5.2.3 Reagents Preparation, Storage, and Disposal -- 5.2.3.1 Collector -- 5.2.3.2 Depressant -- 5.2.3.3 Frother -- 5.2.4 Comminution of the UG2 Ore -- 5.2.5 Batch Flotation Procedure -- 5.2.6 Determination of the Entrainment Factor and Gangue Recovery by Entrainment.
5.2.7 Simulating Short Water Recirculation -- 5.2.8 XRF Analysis of Solids Samples -- 5.2.9 Thermo Scientific Gallery Discrete Automated Photometric (Colorimetric) Analyser (GDAPA) -- 5.3 Results and Discussion -- 5.3.1 Solids and Water Recoveries -- 5.3.2 Copper and Nickel Recoveries and Grades -- 5.3.3 Relating the Water Quality Results from GDAPA to Flotation Performance -- 5.4 Conclusions -- Acknowledgements -- References -- Chapter 6 Complexity of Chalcopyrite Mineral Affecting Copper Recovery During Leaching -- 6.1 Introduction -- 6.2 CuFeS2 Crystal Structure -- 6.3 Application of Dissolution/Leaching of Chalcopyrite -- 6.4 Challenges Associated with Copper Dissolution from the Chalcopyrite Mineral -- 6.4.1 Elemental Sulfur -- 6.4.2 Iron Precipitates -- 6.4.3 Fe-Deficient Polysulfide -- 6.4.4 Gangue-Related Mineral -- 6.5 H2SO4-Fe2(SO4)3-FeSO4-H2O Speciation -- 6.6 Parameters Affecting Dissolution -- 6.6.1 Effect of pH -- 6.6.2 Effect of Size Particle -- 6.6.3 Effect of Concentration -- 6.6.4 Effect of Temperature -- 6.6.5 Effect of Potential -- 6.6.6 Effect of Geology of the Host Ore Body -- 6.6.7 Effect of Additives -- 6.6.7.1 Addition of Silver (Ag+) -- 6.6.7.2 Addition of Chloride (Cl-) -- 6.7 Thermodynamic Considerations -- 6.8 CuFeS2 Phases Conversion/Copper Sulfide (Cu-S) Intermediate Phases -- 6.8.1 Alternative Ways of CuFeS2 Dissolution -- 6.8.2 Development in the Field of Copper Sulfide Mineral Leaching -- 6.9 Conclusion -- References -- Chapter 7 Fe3+-Fe2+ Redox Cycle Peculiarity in the Acid Dissolution of Copper-Cobalt Complex Ores -- 7.1 Introduction -- 7.2 Conventional Leaching of Copper-Cobalt Minerals -- 7.2.1 Minerals Found in Copper-Cobalt Ores -- 7.2.1.1 Location of the African Copperbelt -- 7.2.1.2 Geology of the Katanguian -- 7.2.2 Thermodynamics of the Cu and Co Bearing Mineral Dissolution.
7.2.2.1 Potential-pH Diagram of the Cu-H2O System at 25°C -- 7.2.2.2 Potential-pH Diagram of the Co-H2O System at 25°C -- 7.2.2.3 Leaching Reactions -- 7.2.3 Leaching of Oxidized Copper Minerals -- 7.2.4 Leaching of Cobalt Oxidized Minerals -- 7.2.4.1 Reaction Chemistry -- 7.2.4.2 Discussions on the Reducing Agents of Co(III) -- 7.2.4.3 Environmental Aspects Related to the Use of Reagents that Generate SO2 -- 7.2.4.4 Experimental Data on Co(III) Reduction -- 7.2.4.5 Microwave Assisted Acid Leaching of Cobalt (III) -- 7.2.5 Leaching of Sulfide Minerals -- 7.3 Fe3+-Fe2+ Redox Cycle in the Dissolution of Mixed Oxidized and Sulfide Minerals -- 7.3.1 Oxidation by Dissolved Oxygen -- 7.3.2 Oxidation by Fe3+ -- 7.3.3 Towards a New "Mineral-Mineral" Process -- 7.4 Application of Mineral-Mineral Leaching Process to the Dissolution of Complex Ores -- 7.4.1 Reaction Mechanism -- 7.4.2 Redox Test Results of the CuFeS2-Fe3O4-Co2O3 System -- 7.4.3 Results of Leaching Tests of the CuFeS2-Fe3O4- Co2O3 System with Temperature Variation -- 7.4.4 Discussions -- 7.5 Conclusion -- References -- Chapter 8 Rare Earth Elements (REEs) in Complex Ores and Spent Materials: Processing Technologies and Relevance in the Global Energy Transition -- 8.1 Introduction -- 8.2 The Chemistry of REEs -- 8.3 REE Minerals and Deposit Types -- 8.4 REE Ore Mining and Processing Technologies -- 8.4.1 Mineral Beneficiation for Recovery of REEs -- 8.4.1.1 Recovery of REEs Using Gravity, Magnetic, and Electrostatic Separation -- 8.4.1.2 Recovery of REEs from Monazite Using Flotation -- 8.4.2 Hydrometallurgical Approach for Processing REEs -- 8.4.2.1 Recovery of REEs from Phosphogypsum -- 8.4.2.2 Recovery of REEs from Apatite Mineral -- 8.4.2.3 Recovery of REEs from Red Mud -- 8.4.2.4 Recovery of REEs from Calcium Sulfate Sludge -- 8.4.2.5 Recovery of REEs from NdFeB Magnet.
8.4.3 Pyrometallurgical Approach for Processing of REEs -- 8.4.4 Integrated Pyrometallurgical and Hydrometallurgical Approach for Processing of REEs -- 8.4.4.1 Recovery of REEs from Monazite, Xenotime and Bastnaesite -- 8.4.4.2 Recovery of REEs Using Alkaline Treatment -- 8.4.5 Alternative Technology for Processing of REEs -- 8.4.5.1 Phytomining for Production of REEs -- 8.4.5.2 Solvometallurgy -- 8.5 Relevance of REEs in Energy Transition -- 8.6 Conclusion -- References -- Index -- Also of Interest -- EULA.
Titolo autorizzato: Recovery of Values from Low-Grade and Complex Minerals  Visualizza cluster
ISBN: 1-119-89689-4
1-119-89688-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910877185003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui