Vai al contenuto principale della pagina

Nano-technological intervention in agricultural productivity / / Javid A. Parray, Mohammad Yaseen Mir, Nowsheen Shameem



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Parray Javid Ahmad Visualizza persona
Titolo: Nano-technological intervention in agricultural productivity / / Javid A. Parray, Mohammad Yaseen Mir, Nowsheen Shameem Visualizza cluster
Pubblicazione: Hoboken, New Jersey : , : Wiley, , [2021]
©2021
Descrizione fisica: 1 online resource (211 pages)
Disciplina: 338.16
Soggetto topico: Alternative agriculture
Nanotechnology - Agriculture
Persona (resp. second.): ShameemNowsheen
Yaseen MirMohammad
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover -- Title Page -- Copyright -- Contents -- About the Authors -- About the Book -- Chapter 1 Nanotechnology and Nanoparticles -- 1.1 Nanoparticles and Their Functions -- 1.2 Classification of NPs -- 1.2.1 Carbon‐Based NPs -- 1.2.2 Metal Nanoparticles -- 1.2.3 Ceramic NPs -- 1.2.4 Semiconductor NPs -- 1.2.5 Polymeric NPs -- 1.2.6 NPs Based on Lipids -- 1.3 Synthesis of Nanoparticles -- 1.3.1 Top‐Down Synthesis -- 1.3.2 Bottom‐Up Synthesis -- 1.4 NPs and Characterization -- 1.4.1 Morphological Characterization -- 1.4.1.1 SEM Technique -- 1.4.1.2 TEM Technique -- 1.4.2 Structural Characteristics -- 1.4.2.1 XRD -- 1.4.2.2 Energy‐Dispersive X‐ray (EDX) -- 1.4.2.3 XPS -- 1.4.2.4 FT‐IR and Raman Spectroscopies -- 1.4.3 Particle Size and Surface Area Characterization -- 1.4.4 Optical Characterizations -- 1.5 Physicochemical Properties of NPs -- 1.5.1 Mechanical and Optical Properties -- 1.5.2 Magnetic Properties -- 1.5.3 Mechanical Properties -- 1.5.4 Thermal Properties -- 1.6 Functions of NPs -- 1.6.1 Drugs and Medications -- 1.6.2 Materials and Manufacturing -- 1.6.3 Environment -- 1.6.4 Electronics -- 1.6.5 Energy Harvesting -- References -- Chapter 2 Implications of Nanotechnology and Environment -- 2.1 Ecotoxicological Implications of Nanoparticles -- 2.1.1 Ecotoxicity of Fullerenes -- 2.1.2 Ecotoxicity of Carbon Nanotubes -- 2.1.3 Ecotoxicity of Metal Nanoparticles -- 2.1.4 Ecotoxicity of Nanocomposites -- 2.1.5 Ecotoxicity of Oxide Nanoparticles -- 2.2 Nanotechnology and Agriculture -- 2.3 Risk Assessment Factors and Modulation of Nanomaterials -- References -- Chapter 3 Nanotechnology and Disease Management -- 3.1 Recent Advancements in Plant Nanotechnology -- 3.1.1 Cerium Oxide (CeO2) NPs -- 3.1.2 Silver NPs -- 3.1.3 Titanium Dioxide (ToO2) NPs -- 3.1.4 Zinc Oxide (ZnO) NPs -- 3.1.5 Cupric Oxide (CuO) NPs -- 3.1.6 Gold NPs (GNPs).
3.1.7 Carbon Nanotubes -- 3.1.8 Nickel Oxide NPs -- 3.2 Nanotechnology: Role in Plant‐Parasitic Control -- 3.2.1 Nanocapsules: Liposomes and Polymers -- 3.2.1.1 Potential Uses in Controlling Parasitic Weeds -- 3.3 Abiotic Stress‐Tolerant Transgenic Crops and Nanotechnology -- 3.3.1 Nanotechnology in Gene Transfer Experiments -- 3.4 Plant Pathogens and Nanoparticle Biosynthesis -- 3.4.1 Bacteria‐Mediated Biosynthesis -- 3.4.2 Fungal Mediated Biosynthesis -- 3.5 Nanomaterial and Plant Protection Against Pests and Pathogens -- 3.6 Future Perspectives -- References -- Chapter 4 Nanotechnology in Agri‐Food Production -- 4.1 Nanomaterials -- 4.2 Nanotechnology and Food Systems: Food Packing -- 4.3 Nano‐Nutraceuticals -- 4.3.1 Issues with Nano‐Nutraceuticals -- 4.4 Nanotechnological Advancement in Antimicrobial Peptides (AMPs) -- 4.4.1 Passive Nano‐Delivery Systems -- 4.4.1.1 Cyclosporin A -- 4.4.1.2 Nisin -- 4.4.1.3 Polymyxin -- 4.4.2 Antimicrobial Peptides in Targeted Nano‐Delivery Systems -- 4.5 Assessment of Nanotechnology for Enhanced Food Security -- 4.5.1 Framework for Assessing the Potential Role of Nanotechnology in Food -- 4.5.2 Assessment of Nanotechnology Potential Through Literature Survey -- 4.6 Future Perspectives -- References -- Chapter 5 Nanotechnology: Improvement in Agricultural Productivity -- 5.1 Nanoparticle Biosynthesis and Use in Agriculture -- 5.1.1 Silver Nanoparticles -- 5.1.2 Zinc Oxide Nanoparticles -- 5.1.3 Titanium Dioxide (TiO2) Nanoparticles -- 5.2 Nanorobots -- 5.2.1 Environment Monitoring -- 5.2.2 Nanorobot Sensors -- 5.2.3 Pollutant and Chemical Detection -- 5.2.4 Metal Identification -- 5.2.5 Nanorobot Data Transmission -- 5.2.6 Nanorobot System on Nanotechnology Chip -- 5.3 Natural Nanostructures in Food -- 5.3.1 Protein‐Based Nanostructures -- 5.3.1.1 β‐Lactoglobulin -- 5.3.1.2 Serum Albumin.
5.3.1.3 α‐Lactalbumin and Lysozyme (Lys) -- 5.3.1.4 Ovalbumin and Avidin -- 5.3.1.5 Transferrins -- 5.3.1.6 Osteopontin and Osteopontin Lactoperoxidase (OPN) -- 5.3.2 Formation of Natural Nanostructure Subsequently to Molecular Interaction/Complexation -- 5.3.2.1 Lipid‐Based Nanostructures -- References -- Chapter 6 Lignin Nanoparticles: Synthesis and Application -- 6.1 Overview of Lignin Nanoparticles -- 6.2 Lignin Nanoparticle Synthesis (LNPs) -- 6.2.1 Polymerization -- 6.2.2 Acid Precipitation -- 6.2.3 Solvent Exchange Method -- 6.2.4 Ultrasonication -- 6.2.5 Biological Method -- 6.3 Application of Lignin Nanoparticles (LNPs) -- 6.3.1 Antibacterial Activity -- 6.3.2 Antioxidant Activity -- 6.3.3 UV Absorbents -- 6.3.4 Hybrid Nanocomposites -- 6.3.5 Drug Delivery System -- 6.3.6 Adsorbents to Remove Dyes -- 6.3.7 As a Capacitor -- 6.3.8 As a Nano‐trap -- References -- Chapter 7 Contemporary Application of Nanotechnology in Agriculture -- 7.1 Introduction -- 7.2 Nanofertilizers -- 7.3 Nanocomposites -- 7.4 Nanobiosensors -- 7.4.1 Nanosensors in Agriculture -- 7.4.2 Monitoring Soil Conditions and Plant Growth Regulators -- 7.4.3 Plant Pathogen Recognition -- 7.4.4 Detection of Pesticide Residues -- 7.5 Nanopesticides -- 7.6 Natural Nanoparticles: Environmental and Health Implications -- 7.6.1 Water Quality -- 7.6.2 Interactions with Contaminants and Other Organisms -- 7.6.3 Environmental Risks and Biogeochemistry of NNPs -- 7.6.4 Environmental Issues -- 7.7 Future Perspective -- References -- Chapter 8 Nanotechnology: Advances in Plant and Microbial Science -- 8.1 Engineered Nanomaterials and Soil Remediation -- 8.1.1 ENMs: Role in Soil Remediation -- 8.1.1.1 Immobilization -- 8.1.1.2 Photocatalytic Degradation -- 8.2 Fate and Interactions of Nanomaterials in Soil -- 8.2.1 Nanoparticles and Plants -- 8.2.2 Suppressive Effects on Plants.
8.2.3 Promontory Plant Effects -- 8.2.4 Nanoparticles and Impacts on Soil Microbes -- 8.2.5 Zinc and Sulfur Nanoparticles -- 8.2.6 Copper and Silica Nanoparticles -- 8.3 Nanomaterials and Metal Components: Accumulation and Translocation Within Plants -- 8.3.1 NPS: Uptake and Translocation in Plants -- 8.3.2 NPS: Root Uptake and Translocation -- 8.3.3 Assimilated Root Uptake and Translocation Pathways of Nanoparticles -- 8.3.4 NPS: Transformation in the Rhizosphere -- 8.4 Biotransformation of ENPs in Plants -- 8.5 Effect of Nanomaterials on Plants -- 8.5.1 Positive Effects -- 8.5.2 Toxicity -- References -- Chapter 9 Food Application and Processing: Nanotechniques and Bioactive Delivery Systems -- 9.1 Introduction -- 9.2 Phytochemicals and Nanoparticles -- 9.3 Bioactive Delivery Systems -- 9.3.1 Nanotechnology of Natural Products and Drug Delivery -- 9.3.2 Protein‐Based Nanoscale Delivery Systems -- 9.3.3 Polysaccharide‐Based Nanoscale Delivery Systems -- 9.3.4 Complex or Hybrid Nanoscale Delivery Systems -- 9.4 Toxicity of Biodegradable Nanoparticles -- 9.5 Future Perspectives -- References -- Index -- EULA.
Sommario/riassunto: "The global population is growing at an alarming pace, as a result of this, comprehensive manufacturing is needed to satisfy human demand. One of the methods, nanotechnology, gives a solution to sustainable agriculture. The miniature aspect of nanotechnology controls major agricultural processes due to its diminutive dimensions. In agriculture, nano-materials aim to decrease the quantity of chemicals spread, minimize fertilization losses and increase production through management of pesticides and nutrients. With new Nano tools for managing fast diagnostic diseases, and improving the plant capabilities to absorb nutrients, nanotechnology has the ability to enhance agriculture and food. Specific applications, such as nano-fertilizer and nano-pesticides, for trailing products and nutrient concentrations, include the use of nanotechnology in agriculture to improve productivity without contaminating soil, water or the protection of various insect pests and microbial diseases. Nanotechnology can function as sensors to monitor agricultural field soil quality and thereby preserve agricultural plant health"--
Titolo autorizzato: Nano-technological intervention in agricultural productivity  Visualizza cluster
ISBN: 1-119-71486-9
1-119-71489-3
1-119-71483-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910830937603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui