Vai al contenuto principale della pagina

Disturbance observer for advanced motion control with MATLAB/Simulink / / Akira Shimada



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Shimada Akira <1958-> Visualizza persona
Titolo: Disturbance observer for advanced motion control with MATLAB/Simulink / / Akira Shimada Visualizza cluster
Pubblicazione: Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]
©2023
Descrizione fisica: 1 online resource (291 pages)
Disciplina: 629.8312
Soggetto topico: Observers (Control theory)
Motion control devices
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover -- Title Page -- Copyright -- Contents -- About the Author -- Preface -- About the Companion Website -- Chapter 1 Introduction of Disturbance Observer -- 1.1 Types of Disturbance Observers -- 1.1.1 Introduction -- 1.1.2 Observer and Control System Design Concepts -- 1.2 Format of Example and Use of MATLAB -- 1.2.1 Format of the Example Problem -- 1.2.2 Using MATLAB/Simulink -- 1.3 How This Book Is Organized -- 1.3.1 The Structure of This Document -- 1.3.2 How to Read This Book -- References -- Chapter 2 Basics of Disturbance Observer -- 2.1 What Is Disturbance -- 2.2 How Disturbance Estimation Works -- 2.3 Disturbance Rejection and Acceleration Control System -- 2.3.1 Concept of Disturbance Rejection and Acceleration -- 2.3.2 Different Disturbance Observers Depending on How the Disturbance Is Captured -- 2.3.3 Basic Control System Design -- 2.4 Reaction Force Observer (RFOB) -- 2.4.1 Reaction Force Observer Design -- 2.4.2 Combined Use of DOB and RFOB -- 2.5 Internal Model and Two‐degrees‐of‐freedom Control -- 2.5.1 Internal Model Principle -- 2.5.2 Feedforward Control -- 2.5.3 Control System with Disturbance Observer and Feedforward -- 2.6 Effect of Observation Noise and Modeling Error -- 2.6.1 Effect of Observation Noise -- 2.6.2 Effect of Modeling Error -- 2.6.3 Effect of Viscous Friction -- 2.6.4 Effect of Varying Mass -- 2.7 Real System Modeling -- 2.7.1 DC Motor Torque Control Model -- 2.7.2 Without Current Feedback -- 2.7.3 Relationship Between the Cart Model and Rotary‐type Motor -- 2.8 Idea of Robust Control -- References -- Chapter 3 Stabilized Control and Coprime Factorization -- 3.1 Coprime Factorization and Derivation of Stabilizing Controller -- 3.1.1 Derivation of Parameters for Coprime Factorization -- 3.1.2 Stabilizing Controller and Free Parameters -- 3.1.3 Double Coprime Factorization Involving Q(s).
3.2 Relationship with Disturbance Observer -- 3.3 Coprime Factorization and Structure of Two‐degrees‐of‐freedom Control System -- References -- Chapter 4 Disturbance Observer in State Space -- 4.1 Identity Input Disturbance Observer -- 4.1.1 How to Design the Identity Input Disturbance Observer in Continuous System -- 4.1.2 Controllability and State Feedback -- 4.1.3 Continuous‐time Servo System with Identity Disturbance Observer -- 4.2 Identity Reaction Force Observer -- 4.3 Identity Output Disturbance Observer -- 4.4 Identity Higher Order Disturbance Observer Design -- 4.5 Minimal Order Disturbance Observer -- 4.6 Design of Periodic Disturbance Observer -- 4.7 Observability and Noninput/Output Disturbances -- 4.7.1 Mathematical Model of a DC Motor -- 4.7.2 DC Motor Observable Matrix and Rank -- 4.7.3 Observability of Disturbance Estimation -- 4.7.4 Noninput/Output Disturbance Observer and Control -- References -- Chapter 5 Digital Disturbance Observer Design -- 5.1 Identity Digital Disturbance Observer Design -- 5.2 Confirmation of Separation Theorem -- 5.3 Minimal Order Digital Disturbance Observer -- 5.4 Identity High‐order Digital Disturbance Observer -- References -- Chapter 6 Disturbance Observer of Vibrating Systems -- 6.1 Modeling of the Two‐inertia System -- 6.2 Vibration Suppression Control in Transfer Function Representation -- 6.3 Disturbance Observer and Stabilization for Two‐inertia Systems -- 6.3.1 Observer to Estimate Input Shaft Disturbance τd1 -- 6.3.2 Observer to Estimate Output Shaft Disturbance τd2 -- 6.4 Servo System with DOB for Two‐inertia Systems -- 6.4.1 Input Shaft Servo System Considering Input Shaft Disturbance τd1 -- 6.4.2 Output Shaft Servo System Considering Output Shaft Disturbance τd2 -- References -- Chapter 7 Communication Disturbance Observer -- 7.1 Smith Method Overview -- 7.2 Communication Disturbance Observer.
7.3 Control with Communication DOB Under Disturbance -- References -- Chapter 8 Multirate Disturbance Observer -- 8.1 Multirate System Modeling -- 8.2 Multirate Disturbance Observer (Method 1) -- 8.2.1 Disturbance Observer Design (Method 1) -- 8.2.2 Controller Design Using Multirate Observer (Method 1) -- 8.3 Multirate Disturbance Observer (Method 2) -- References -- Chapter 9 Model Predictive Control with DOB -- 9.1 Model Predictive Control (MPC) -- 9.1.1 Overview of MPC -- 9.1.2 Formulation and Objective Function for the MPC Design -- 9.2 Constraint Descriptions -- 9.2.1 Treatment of Constraints on the Control Input û(k) -- 9.2.2 Constraints on the Control Variable ̂z(k) -- 9.2.3 Constraints on û(k) Change in the Control Input -- 9.2.4 Constraints on the Control Inputs and Quantities -- 9.3 MPC System Design -- 9.4 Design of Disturbance Observer‐Merged MPC System -- References -- Chapter 10 Kalman Filter with Disturbance Estimation (KFD) -- 10.1 Design of Kalman Filter with Disturbance Estimation -- 10.2 Design of Stationary Kalman Filter with Disturbance Estimation (SKFD) -- 10.3 Design of Extended Kalman Filter with Disturbance Estimation (EKFD) -- References -- Chapter 11 Adaptive Disturbance Observer -- 11.1 Structure of an Adaptive Observer -- 11.2 Derivation of Observable Canonical System for Adaptive DOB -- 11.3 Creating State Variable Filter -- 11.4 Design of Kreisselmeier‐Type Adaptive Disturbance Observer -- References -- Chapter 12 Methods for Measuring and Estimating Velocities -- 12.1 Importance of Velocity Measurement -- 12.2 Velocity Measurement and Estimation Methods -- 12.2.1 Pseudo‐derivative -- 12.2.2 Counting and Timekeeping Methods -- 12.2.3 M/T Method -- 12.2.4 Synchronous Counting Method -- 12.2.5 Instantaneous Velocity Observer -- References -- Appendix A Mathematical Foundations and Control Theory -- A.1 Mathematics.
A.1.1 Definition and Calculus of Matrix Exponential Functions -- A.1.2 Positive Definite Matrix -- A.1.3 Matrix Rank -- A.2 Basic Classical Control Theory -- A.2.1 Poles and Zeros -- A.2.2 PI Velocity Control -- A.2.3 PID Position Control System -- A.2.4 Final Value and Initial Value Theorems -- A.3 Basic Modern Control Theory -- A.3.1 State and Output Equations -- A.3.2 Solution of the State Equation for the Continuous System -- A.3.3 Equation of State to Transfer Function -- A.3.4 Poles and Zeros of Continuous Systems -- A.3.5 Controllability and Observability of Continuous Systems -- A.3.6 Duality Theorem -- A.3.7 State Feedback Control of Continuous Systems -- A.3.8 Servo System Design -- A.4 Doyle's Notation and Double Coprime Factorization -- A.4.1 Doyle's Notation -- A.4.2 Confirmation of Double Coprime Factorization -- A.5 Foundations of Digital Control Theory -- A.5.1 Digital Control and State and Output Equations -- A.5.2 Poles and Zeros of Digital Systems -- A.5.3 Reachability and Observability of Digital Systems -- A.5.4 Digital State Feedback Control System Design -- A.5.5 Digital Servo System Design -- A.6 Representation and Meaning of Optimal Programming -- A.6.1 What Is Optimal Programming? -- A.6.2 fmincon Function -- A.6.3 Example of a Drawing Program -- References -- Index -- EULA.
Titolo autorizzato: Disturbance observer for advanced motion control with MATLAB  Visualizza cluster
ISBN: 1-394-17813-1
1-394-17811-5
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910830602403321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: IEEE Press Series on Control Systems Theory and Applications Series