Vai al contenuto principale della pagina
Autore: | Choi Byungcho |
Titolo: | Pulsewidth modulated DC-to-DC power conversion : circuits, dynamics, control, and DC power distribution systems / / Byungcho Choi |
Pubblicazione: | Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022] |
©2022 | |
Edizione: | Second edition. |
Descrizione fisica: | 1 online resource (723 pages) |
Disciplina: | 621.3132 |
Soggetto topico: | DC-to-DC converters |
Pulse-duration modulation | |
PWM power converters | |
Nota di contenuto: | Cover -- Title Page -- Copyright -- Contents -- Author Biography -- Preface -- Chapter 1 PWM Dc‐to‐Dc Power Conversion -- 1.1 PWM Dc‐to‐Dc Power Conversion -- 1.1.1 Dc‐to‐Dc Power Conversion -- 1.1.2 PWM Technique -- 1.2 Standalone Dc‐to‐Dc Power Conversion System -- 1.2.1 Dc Source with Non‐ideal Characteristics -- 1.2.2 Dc‐to‐Dc Converter as Voltage Source -- 1.2.3 Load as Dynamic Current Sink -- 1.3 Features and Issues of PWM Dc‐to‐Dc Converter -- 1.3.1 Dc‐to‐Dc Power Converter Circuits -- 1.3.2 Dynamic Modeling and Analysis -- 1.3.3 Dynamic Performance and Control Design -- 1.4 Dc Power Distribution Systems -- 1.4.1 Structure of Dc Power Distribution Systems -- 1.4.2 Issues in Dc Power Distribution System Analysis and Design -- 1.5 Chapter Highlights -- 1.5.1 Part I: Dc‐to‐Dc Converter Circuits -- 1.5.2 Part II: Modeling and Dynamics of PWM Converters -- 1.5.3 Part III: Control Schemes and Converter Performance -- 1.5.4 Part IV: Dc Power Distribution Systems -- Part I Dc‐to‐Dc Power Converter Circuits -- Chapter 2 Buck Converter -- 2.1 Ideal Step‐Down Dc‐to‐Dc Power Conversion -- 2.2 Buck Converter: Step‐Down Dc‐to‐Dc Converter -- 2.2.1 Evolution to Buck Converter -- 2.2.2 Frequency‐Domain Analysis -- 2.3 Buck Converter in Start‐up Transient -- 2.3.1 Piecewise Linear Analysis -- 2.3.2 Start‐up Response -- 2.4 Buck Converter in Steady State -- 2.4.1 Circuit Analysis Techniques -- 2.4.1.1 Piecewise Linear Analysis -- 2.4.1.2 Small‐Ripple Approximation -- 2.4.1.3 Flux Linkage Balance Condition and Charge Balance Condition -- 2.4.2 Steady‐State Analysis -- 2.4.3 Evaluation of Output Voltage Ripple -- 2.4.3.1 Evaluation with Ideal Capacitor -- 2.4.3.2 Effects of Parasitic Resistance of Capacitor -- 2.5 Buck Converter in Discontinuous Conduction Mode -- 2.5.1 Origin of Discontinuous Conduction Mode Operation -- 2.5.2 Conditions for DCM Operation. |
2.5.3 Steady‐State Operation in DCM -- 2.6 Closed‐Loop Control of Buck Converter -- 2.6.1 Closed‐Loop Feedback Controller -- 2.6.1.1 Pulsewidth Modulation -- 2.6.1.2 Voltage Feedback Circuit -- 2.6.2 Transient Responses of Closed‐Loop Controlled Buck Converter -- 2.6.2.1 Step Input Response -- 2.6.2.2 Step Load Response -- 2.6.2.3 Operational Mode Change Response -- 2.7 Chapter Summary -- Problems -- Chapter 3 Dc‐to‐Dc Power Converter Circuits -- 3.1 Boost Converter -- 3.1.1 Evolution to Boost Converter -- 3.1.2 Steady‐State Analysis in CCM -- 3.1.2.1 Steady‐State Operation in CCM -- 3.1.2.2 Estimation of Output Voltage Ripple -- 3.1.3 Steady‐State Analysis in DCM -- 3.1.4 Effects of Parasitic Resistance on Voltage Gain -- 3.2 Buck/Boost Converter -- 3.2.1 Evolution to Buck/Boost Converter -- 3.2.2 Steady‐State Analysis in CCM -- 3.2.2.1 Steady‐State Operation in CCM -- 3.2.2.2 Estimation of Output Voltage Ripple -- 3.2.3 Steady‐State Analysis in DCM -- 3.3 Three Basic Converters -- 3.3.1 Structure and Operation of Three Basic Converters -- 3.3.2 Voltage Gain of Three Basic Converters -- 3.4 Flyback Converter: Transformer‐Isolated Buck/Boost Converter -- 3.4.1 Evolution to Flyback Converter -- 3.4.2 Steady‐State Analysis in CCM -- 3.4.3 Steady‐State Analysis in DCM -- 3.5 Bridge‐Type Buck‐Derived Isolated Dc‐to‐Dc Converters -- 3.5.1 Switch Network and Multi‐Winding Transformer -- 3.5.1.1 Switch Network Structure -- 3.5.1.2 Circuit Models for Multi‐winding Transformers -- 3.5.2 Full‐Bridge Converter -- 3.5.2.1 Operation with Ideal Transformer -- 3.5.2.2 Effects of Magnetizing Inductance -- 3.5.3 Half‐Bridge Converter -- 3.5.4 Push-Pull Converter -- 3.6 Forward Converters -- 3.6.1 Basic Operational Principles -- 3.6.1.1 Reset Problem and Reset Circuit -- 3.6.1.2 Switch Network with Zener Diode Reset. | |
3.6.1.3 Switch Network with Tertiary Winding Reset -- 3.6.2 Tertiary‐Winding Reset Forward Converter -- 3.6.3 Two‐Switch Forward Converter -- 3.7 Chapter Summary -- Reference -- Problems -- Part II Modeling and Dynamics of PWM Converters -- Chapter 4 Modeling PWM Dc‐to‐Dc Converters -- 4.1 Overview of PWM Converter Modeling -- 4.1.1 Power Stage Modeling -- 4.1.2 PWM Block Modeling -- 4.1.3 Voltage Feedback Circuit and Small‐Signal Model of PWM Converter -- 4.2 Averaging Power Stage Dynamics -- 4.2.1 State‐Space Averaging Method -- 4.2.1.1 Switched State‐Space Model and Switching Function -- 4.2.1.2 Continuous Duty Ratio and Averaged State‐Space Model -- 4.2.2 Circuit Averaging Technique -- 4.2.2.1 Averaging Switch Drive Signal -- 4.2.2.2 Procedure of Circuit Averaging -- 4.2.2.3 PWM Switch -- 4.2.2.4 Averaging PWM Switch -- 4.2.2.5 Average Models for Three Basic PWM Converters -- 4.2.3 Circuit Averaging and State‐Space Averaging -- 4.3 Linearizing Averaged Power Stage Dynamics -- 4.3.1 Linearization of Nonlinear Function and Small‐Signal Model -- 4.3.1.1 Single‐Variable Nonlinear Functions -- 4.3.1.2 Multiple‐Variable Nonlinear Functions -- 4.3.2 Small‐Signal Model of PWM Switch - The PWM Switch Model -- 4.3.3 Small‐Signal Model of Converter Power Stage -- 4.4 Frequency Response of Converter Power Stage -- 4.4.1 Sinusoidal Response of Power Stage -- 4.4.2 Frequency Response and s‐domain Small‐Signal Model -- 4.5 Generalization of Power Stage Modeling -- 4.5.1 Power Stage Modeling with Parasitic Resistances -- 4.5.1.1 Buck Converter with Ideal Voltage Source -- 4.5.1.2 Buck Converter with Input Filter -- 4.5.1.3 Linearization of Averaged PWM Switch Equation -- 4.5.1.4 Predictions of Refined Small‐Signal Model -- 4.5.2 Modeling PWM Converters in DCM Operation -- 4.5.2.1 Averaged Equations for PWM Switch in DCM. | |
4.5.2.2 Linearization of Averaged Equation and Small‐Signal Circuit Model -- 4.5.3 Modeling Isolated PWM Converters -- 4.5.3.1 Modeling Forward Converter and Bridge‐Type Converters -- 4.5.3.2 Modeling Flyback Converter -- 4.6 Small‐Signal Gain of PWM Block -- 4.7 Universal Small‐Signal Model for PWM Dc‐to‐Dc Converters -- 4.7.1 Voltage Feedback Circuit -- 4.7.1.1 Output Voltage Control -- 4.7.1.2 Voltage Feedback Compensation -- 4.7.2 Universal Small‐Signal Model for PWM Converters -- 4.8 Chapter Summary -- References -- Problems -- Chapter 5 Power Stage Transfer Functions -- 5.1 Bode Plot for Transfer Functions -- 5.1.1 Basic Definitions -- 5.1.1.1 Transfer Function -- 5.1.1.2 Frequency Response -- 5.1.1.3 Polar Plot and Bode Plot Representations -- 5.1.2 Bode Plots for Multiplication Factors -- 5.1.2.1 Constant -- 5.1.2.2 Single and Double Integration Functions -- 5.1.2.3 Single and Double Differentiation Functions -- 5.1.2.4 Single Pole and Single Zero Functions -- 5.1.2.5 Double Pole and Double Zero Functions -- 5.1.2.6 RHP Pole and RHP Zero Functions -- 5.1.3 Bode Plot Construction for Transfer Functions -- 5.1.3.1 Examples of Bode Plot Construction -- 5.1.3.2 Non‐minimum Phase System -- 5.1.4 Identification of Transfer Function from Bode Plot -- 5.2 Power Stage Transfer Functions of Three Basic Converters in CCM Operation -- 5.2.1 Power Stage Transfer Functions of Buck Converter -- 5.2.1.1 Input‐to‐Output Transfer Function -- 5.2.1.2 Duty Ratio‐to‐Output Transfer Function -- 5.2.1.3 Load Current‐to‐Output Transfer Function -- 5.2.2 Power Stage Transfer Functions of Boost Converter -- 5.2.2.1 Input‐to‐Output Transfer Function -- 5.2.2.2 Duty Ratio‐to‐Output Transfer Function and RHP Zero -- 5.2.2.3 Load Current‐to‐Output Transfer Function -- 5.2.2.4 Functional Origin of RHP Zero -- 5.2.3 Power Stage Transfer Functions of Buck/Boost Converter. | |
5.3 Power Stage Transfer Functions in DCM Operation -- 5.3.1 Evaluation of DCM Transfer Functions -- 5.3.2 Analysis of DCM Duty Ratio‐to‐Output Transfer Function -- 5.4 Power Stage Transfer Functions of Isolated Converters -- 5.4.1 Tertiary‐Winding Reset Forward Converter -- 5.4.2 Flyback Converter -- 5.5 Empirical Methods for Small‐Signal Analysis -- 5.6 Chapter Summary -- Reference -- Problems -- Chapter 6 Dynamic Performance of PWM Dc‐to‐Dc Converters -- 6.1 Stability -- 6.2 Frequency‐Domain Performance Criteria -- 6.2.1 Loop Gain -- 6.2.2 Audio‐susceptibility -- 6.2.3 Output Impedance -- 6.3 Time‐Domain Performance Metrics -- 6.3.1 Step Load Response -- 6.3.2 Step Input Response -- 6.4 Stability of Dc‐to‐Dc Converters -- 6.4.1 Stability of Linear Time‐Invariant Systems -- 6.4.1.1 Definition of BIBO Stability -- 6.4.1.2 Unit Impulse Function and Impulse Response -- 6.4.1.3 Impulse Response and BIBO Stability -- 6.4.1.4 Pole Locations and BIBO Stability -- 6.4.2 Small‐Signal Stability of Dc‐to‐Dc Converters -- 6.5 Nyquist Criterion -- 6.5.1 Theoretical Foundation of Nyquist Criterion -- 6.5.1.1 Contour Mapping from s‐plane to F(s)‐plane -- 6.5.1.2 Cauchy's Theorem -- 6.5.2 Proof of Cauchy's Theorem -- 6.5.2.1 Proof of Fact I and Fact II -- 6.5.2.2 Cauchy's Theorem to Evaluate RHP Roots in 1+T(s)& -- equals -- 0 -- 6.5.3 Nyquist Stability Criterion -- 6.5.4 Application of Nyquist Stability Criterion to Dc‐to‐Dc Converters -- 6.6 Relative Stability: Gain Margin and Phase Margin -- 6.7 Chapter Summary -- Problems -- Part III Control Schemes and Converter Performance -- Chapter 7 Feedback Compensation and Closed‐Loop Performance - Voltage Mode Control -- 7.1 Asymptotic Analysis Method -- 7.1.1 Concept of Asymptotic Analysis Method -- 7.1.2 Examples of Asymptotic Analysis Method -- 7.1.2.1 Procedures for Asymptotic Analysis. | |
7.2 Analysis of Frequency‐Domain Performance in CCM. | |
Sommario/riassunto: | "This book provides comprehensive information on the pulsewidth modulated DC-to-DC converters for analysis and design as standalone converters and as an interconnected system. It begins with discussions of the circuits, dynamics, and control of standalone PWM converters. The second edition extends the scope of the first edition to include the dynamic analysis and system design of DC power distribution systems. The chapters in each section of the book individually underscore the issues of standalone PWM converters and collectively address the dynamics of DC power distribution systems. The authors balance theories with practical aspects of DC-to-DC power conversion based on classical linear system theory"-- |
Titolo autorizzato: | Pulsewidth modulated DC-to-DC power conversion |
ISBN: | 1-119-45447-6 |
1-119-45448-4 | |
1-119-45444-1 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910830521303321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |