Vai al contenuto principale della pagina
Autore: | Tewari Ashish |
Titolo: | Foundations of space dynamics / / Ashish Tewari |
Pubblicazione: | Hoboken, N.J., : Wiley, 2021 |
Hoboken, New Jersey : , : Wiley, , 2021 | |
Edizione: | First edition. |
Descrizione fisica: | 1 online resource (371 pages) |
Disciplina: | 629.4/11 |
Soggetto topico: | Aerospace engineering |
Astrodynamics | |
Orbital mechanics | |
Soggetto non controllato: | Transportation |
Classificazione: | 538 |
629.4/11 | |
Note generali: | Includes bibliographical references and index |
Nota di bibliografia: | Includes bibliographical references and index. |
Nota di contenuto: | Preface xiii 1 Introduction 1 1.1 Space Flight 1 1.1.1 Atmosphere as Perturbing Environment 1 1.1.2 Gravity as the Governing Force 4 1.1.3 Topics in Space Dynamics 5 1.2 Reference Frames and Time Scales 5 1.2.1 Sidereal Frame 5 1.2.2 Celestial Frame 8 1.2.3 Synodic Frame 8 1.2.4 Julian Date 8 1.3 Classification of Space Missions 10 Exercises 10 References 11 2 Dynamics 13 2.1 Notation and Basics 13 2.2 Plane Kinematics 14 2.3 Newton's Laws 16 2.4 Particle Dynamics 17 2.5 The n-Body Problem 20 2.6 Dynamics of a Body 24 2.7 Gravity Field of a Body 27 2.7.1 Legendre Polynomials 29 2.7.2 Spherical Coordinates 31 2.7.3 Axisymmetric Body 34 2.7.4 Spherical Body with Radially Symmetric Mass Distribution 37 Exercises 37 References 40 3 Keplerian Motion 41 3.1 The Two-Body Problem 41 3.2 Orbital Angular Momentum 43 3.3 Orbital Energy Integral 45 3.4 Orbital Eccentricity 46 3.5 Orbit Equation 49 3.5.1 Elliptic Orbit 53 3.5.2 Parabolic Orbit 56 3.5.3 Hyperbolic Orbit 56 3.5.4 Rectilinear Motion 58 3.6 Orbital Velocity and Flight Path Angle 60 3.7 Perifocal Frame and Lagrange's Coefficients 63 Exercises 65 4 Time in Orbit 69 4.1 Position and Velocity in an Elliptic Orbit 70 4.2 Solution to Kepler's Equation 75 4.2.1 Newton's Method 76 4.2.2 Solution by Bessel Functions 78 4.3 Position and Velocity in a Hyperbolic Orbit 80 4.4 Position and Velocity in a Parabolic Orbit 84 4.5 Universal Variable for Keplerian Motion 86 Exercises 88 References 89 5 Orbital Plane 91 5.1 Rotation Matrix 91 5.2 Euler Axis and Principal Angle 94 5.3 Elementary Rotations and Euler Angles 97 5.4 Euler-Angle Representation of the Orbital Plane 101 5.4.1 Celestial Reference Frame 103 5.4.2 Local-Horizon Frame 104 5.4.3 Classical Euler Angles 106 5.5 Planet-Fixed Coordinate System 111 Exercises 114 6 Orbital Manoeuvres 117 6.1 Single-Impulse Orbital Manoeuvres 119 6.2 Multi-impulse Orbital Transfer 123 6.2.1 Hohmann Transfer 124 6.2.2 Rendezvous in Circular Orbit 127 6.2.3 Outer Bi-elliptic Transfer 130 6.3 Continuous Thrust Manoeuvres 133 6.3.1 Planar Manoeuvres 134 6.3.2 Constant Radial Acceleration from Circular Orbit 135 6.3.3 Constant Circumferential Acceleration from Circular Orbit 136 6.3.4 Constant Tangential Acceleration from Circular Orbit 139 Exercises 141 References 143 7 Relative Motion in Orbit 145 7.1 Hill-Clohessy-Wiltshire Equations 148 7.2 Linear State-Space Model 151 7.3 Impulsive Manoeuvres About a Circular Orbit 153 7.3.1 Orbital Rendezvous 153 7.4 Keplerian Relative Motion 155 Exercises 158 8 Lambert's Problem 161 8.1 Two-Point Orbital Transfer 161 8.1.1 Transfer Triangle and Terminal Velocity Vectors 162 8.2 Elliptic Transfer 164 8.2.1 Locus of the Vacant Focii 165 8.2.2 Minimum-Energy and Minimum-Eccentricity Transfers 166 8.3 Lambert's Theorem 168 8.3.1 Time in Elliptic Transfer 169 8.3.2 Time in Hyperbolic Transfer 173 8.3.3 Time in Parabolic Transfer 175 8.4 Solution to Lambert's Problem 177 8.4.1 Parameter of Transfer Orbit 178 8.4.2 Stumpff Function Method 179 8.4.3 Hypergeometric Function Method 185 Exercises 188 References 190 9 Orbital Perturbations 191 9.1 Perturbing Acceleration 191 9.2 Osculating Orbit 192 9.3 Variation of Parameters 194 9.3.1 Lagrange Brackets 197 9.4 Lagrange Planetary Equations 199 9.5 Gauss Variational Model 209 9.6 Variation of Vectors 214 9.7 Mean Orbital Perturbation 219 9.8 Orbital Perturbation Due to Oblateness 220 9.8.1 Sun-Synchronous Orbits 225 9.8.2 Molniya Orbits 226 9.9 Effects of Atmospheric Drag 227 9.9.1 Life of a Satellite in a Low Circular Orbit 228 9.9.2 Effect on Orbital Angular Momentum 229 9.9.3 Effect on Orbital Eccentricity and Periapsis 231 9.10 Third-Body Perturbation 235 9.10.1 Lunar and Solar Perturbations on an Earth Satellite 238 9.10.2 Sphere of Influence and Conic Patching 243 9.11 Numerical Methods for Perturbed Keplerian Motion 246 9.11.1 Cowell's Method 246 9.11.2 Encke's Method 246 Exercises 250 References 254 10 Three-Body Problem 255 10.1 Equations of Motion 256 10.2 Particular Solutions by Lagrange 257 Equilibrium Solutions in a Rotating Frame 257 Conic Section Solutions 259 10.3 Circular Restricted Three-Body Problem 261 10.3.1 Equations of Motion in the Inertial Frame 261 10.4 Non-dimensional Equations in the Synodic Frame 263 10.5 Lagrangian Points and Stability 267 10.5.1 Stability Analysis 268 10.6 Orbital Energy and Jacobi's Integral 270 10.6.1 Zero-Relative-Speed Contours 272 10.6.2 Tisserand's Criterion 275 10.7 Canonical Formulation 276 10.8 Special Three-Body Trajectories 278 10.8.1 Perturbed Orbits About a Primary 279 10.8.2 Free-Return Trajectories 279 Exercises 282 Reference 283 11 Attitude Dynamics 285 11.1 Euler's Equations of Attitude Kinetics 286 11.2 Attitude Kinematics 288 11.3 Rotational Kinetic Energy 290 11.4 Principal Axes 292 11.5 Torque-Free Rotation of Spacecraft 294 11.5.1 Stability of Rotational States 295 11.6 Precession and Nutation 298 11.7 Semi-Rigid Spacecraft 299 11.7.1 Dual-Spin Stability 301 11.8 Solution to Torque-Free Euler's Equations 303 11.8.1 Axisymmetric Spacecraft 304 11.8.2 Jacobian Elliptic Functions 307 11.8.3 Runge-Kutta Solution 308 11.9 Gravity-Gradient Stabilization 312 Exercises 321 12 Attitude Manoeuvres 323 12.1 Impulsive Manoeuvres with Attitude Thrusters 323 12.1.1 Single-Axis Rotation 324 12.1.2 Rigid Axisymmetric Spin-Stabilized Spacecraft 326 12.1.3 Spin-Stabilized Asymmetric Spacecraft 330 12.2 Attitude Manoeuvres with Rotors 330 12.2.1 Reaction Wheel 332 12.2.2 Control-Moment Gyro 333 12.2.3 Variable-Speed Control-Moment Gyro 334 Exercises 335 References 337 A Numerical Solution of Ordinary Differential Equations 339 A.1 Fixed-Step Runge-Kutta Algorithms 339 A.2 Variable-Step Runge-Kutta Algorithms 340 A.3 Runge-Kutta-Nyström Algorithms 342 References 343 B Jacobian Elliptic Functions 345 Reference 346 Index. |
Sommario/riassunto: | "Space dynamics is one of the most important topics in aerospace engineering. It governs the satellites launched into an Earth orbit as well as lunar and interplanetary space exploration missions. The successful launching and operation of all spacecraft requires a good knowledge of space dynamics. Space dynamics can be divided into two broad categories: (i) orbital mechanics, and (ii) attitude dynamics. Orbital mechanics is a study of the translational motion of a spacecraft under the gravitational influence of either one or several large bodies. Attitude dynamics is the study of rotational motion of a rigid spacecraft about its own centre of mass, and includes both kinematical and kinetic description in terms of Euler angles, quaternion, or Rodrigues/modified Rodrigues parameters, and the angular velocity components."-- |
Titolo autorizzato: | Foundations of space dynamics |
ISBN: | 1-119-45532-4 |
1-119-45533-2 | |
1-119-45530-8 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Non definito |
Record Nr.: | 9910830252603321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |