Vai al contenuto principale della pagina

Nevanlinna theory and complex differential equations / / Ilpo Laine



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Laine Ilpo Visualizza persona
Titolo: Nevanlinna theory and complex differential equations / / Ilpo Laine Visualizza cluster
Pubblicazione: Berlin ; ; New York, : W. de Gruyter, c1992
Edizione: Reprint 2011
Descrizione fisica: 1 online resource (352 p.)
Disciplina: 515/.35
Soggetto topico: Nevanlinna theory
Differential equations
Functions of complex variables
Classificazione: SK 520
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references (p. 311-338) and index.
Nota di contenuto: Front matter -- Preface -- Introduction -- Chapter 1 Results from function theory -- Chapter 2 Nevanlinna theory of meromorphic functions -- Chapter 3 Wiman-Valiron theory -- Chapter 4 Linear differential equations: basic results -- Chapter 5 Linear differential equations: zero distribution in the second order case -- Chapter 6 Complex differential equations and the Schwarzian derivative -- Chapter 7 Higher order linear differential equations -- Chapter 8 Non-homogeneous linear differential equations -- Chapter 9 Basic non-linear differential equations -- Chapter 10 The Malmquist-Yosida-Steinmetz type theorems -- Chapter 11 First order algebraic differential equations -- Chapter 12 Second order algebraic differential equations -- Chapter 13 Algebraic differential equations of arbitrary order -- Chapter 14 Algebraic differential equations and differential fields -- Bibliography -- Index -- Backmatter
Sommario/riassunto: No detailed description available for "Nevanlinna Theory and Complex Differential Equations".
Titolo autorizzato: Nevanlinna theory and complex differential equations  Visualizza cluster
ISBN: 3-11-086314-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910815986803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: De Gruyter Studies in Mathematics