Vai al contenuto principale della pagina

Complementation of normal subgroups : in finite groups



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Kirtland Joseph (Mathematics professor) Visualizza persona
Titolo: Complementation of normal subgroups : in finite groups Visualizza cluster
Pubblicazione: Berlin, [Germany] ; ; Munich, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2017
©2017
Descrizione fisica: 1 online resource (144 pages) : illustrations, tables
Disciplina: 512/.23
Soggetto topico: Finite groups
Sylow subgroups
Nota di bibliografia: Includes bibliographical references and indexes.
Nota di contenuto: Frontmatter -- Preface -- Contents -- Notation -- 1. Prerequisites -- 2. The Schur-Zassenhaus theorem: A bit of history and motivation -- 3. Abelian and minimal normal subgroups -- 4. Reduction theorems -- 5. Subgroups in the chief series, derived series, and lower nilpotent series -- 6. Normal subgroups with abelian sylow subgroups -- 7. The formation generation -- 8. Groups with specific classes of subgroups complemented -- Bibliography -- Author index -- Subject index
Sommario/riassunto: Starting with the Schur-Zassenhaus theorem, this monograph documents a wide variety of results concerning complementation of normal subgroups in finite groups. The contents cover a wide range of material from reduction theorems and subgroups in the derived and lower nilpotent series to abelian normal subgroups and formations. ContentsPrerequisitesThe Schur-Zassenhaus theorem: A bit of history and motivationAbelian and minimal normal subgroupsReduction theoremsSubgroups in the chief series, derived series, and lower nilpotent seriesNormal subgroups with abelian sylow subgroupsThe formation generationGroups with specific classes of subgroups complemented
Titolo autorizzato: Complementation of normal subgroups  Visualizza cluster
ISBN: 3-11-047892-7
3-11-048021-2
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910795044403321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui