Vai al contenuto principale della pagina
| Autore: |
Connett William C (William Carroll), <1939->
|
| Titolo: |
The theory of ultraspherical multipliers / / W. C. Connett and A. L. Schwartz
|
| Pubblicazione: | Providence, Rhode Island : , : American Mathematical Society, , 1977 |
| ©[1977] | |
| Descrizione fisica: | 1 online resource (99 p.) |
| Disciplina: | 510.8 |
| Soggetto topico: | Multipliers (Mathematical analysis) |
| Spherical functions | |
| Sobolev spaces | |
| Besov spaces | |
| Persona (resp. second.): | SchwartzAlan L <1941-> (Alan Lee) |
| Note generali: | Description based upon print version of record. |
| Nota di bibliografia: | Includes bibliographical references. |
| Nota di contenuto: | ""Table of Contents""; ""Â0. Introduction""; ""I. The interpolation of ""local"" spaces""; ""Â1. Notations and definitions""; ""Â2. Stability under complex interpolation""; ""Â3. Interpolation of multiplier theorems""; ""II. Families of Banach spaces""; ""Â4. Taibelson spaces and spaces of Bessel potentials""; ""Â5. The properties of localizations of spaces of Lipschitz type""; ""Â6. Spaces of sequences""; ""III. The theory of ultraspherical multipliers""; ""Â7. The ultraspherical convolution""; ""Â8. A Littlewood-Paley Theory for ultraspherical series"" |
| ""Â9. A full range multiplier Theorem for q = 2""""Â10. The interpolation of ultraspherical multiplier theorems""; ""Â11. Some of these results are best possible""; ""IV. Applications to other expansions""; ""Â12. Multiplier theorems for Hankel transforms and spaces of radial functions""; ""Â13. Multipliers for spherical harmonic expansions""; ""Â14. Multipliers for Jacob! expansions""; ""Figures""; ""Table of notation""; ""Bibliography"" | |
| Titolo autorizzato: | The theory of ultraspherical multipliers ![]() |
| ISBN: | 1-4704-0866-X |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910788609103321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |