Vai al contenuto principale della pagina

Coherent Sheaves, Superconnections, and Riemann-Roch-Grothendieck / / by Jean-Michel Bismut, Shu Shen, Zhaoting Wei



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Bismut Jean-Michel Visualizza persona
Titolo: Coherent Sheaves, Superconnections, and Riemann-Roch-Grothendieck / / by Jean-Michel Bismut, Shu Shen, Zhaoting Wei Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2023
Edizione: 1st ed. 2023.
Descrizione fisica: 1 online resource (181 pages)
Disciplina: 516.183
Soggetto topico: Algebra, Homological
K-theory
Differential equations
Geometry, Differential
Category Theory, Homological Algebra
K-Theory
Differential Equations
Differential Geometry
Altri autori: ShenShu  
WeiZhaoting  
Nota di contenuto: Introduction -- Bott-Chern Cohomology and Characteristic Classes -- The Derived Category ${\mathrm{D^{b}_{\mathrm{coh}}}}$ -- Preliminaries on Linear Algebra and Differential Geometry -- The Antiholomorphic Superconnections of Block -- An Equivalence of Categories -- Antiholomorphic Superconnections and Generalized Metrics -- Generalized Metrics and Chern Character Forms -- The Case of Embeddings -- Submersions and Elliptic Superconnections -- Elliptic Superconnection Forms and Direct Images -- A Proof of Theorem 10-1 when $\overline{\partial}^{X}\partial^{X}\omega^{X}=0$. -- The Hypoelliptic Superconnections -- The Hypoelliptic Superconnection Forms -- The Hypoelliptic Superconnection Forms when $\overline{\partial}^{X}\partial^{X}\omega^{X}=0$ -- Exotic Superconnections and Riemann-Roch-Grothendieck -- Subject Index -- Index of Notation -- Bibliography.
Sommario/riassunto: This monograph addresses two significant related questions in complex geometry: the construction of a Chern character on the Grothendieck group of coherent sheaves of a compact complex manifold with values in its Bott-Chern cohomology, and the proof of a corresponding Riemann-Roch-Grothendieck theorem. One main tool used is the equivalence of categories established by Block between the derived category of bounded complexes with coherent cohomology and the homotopy category of antiholomorphic superconnections. Chern-Weil theoretic techniques are then used to construct forms that represent the Chern character. The main theorem is then established using methods of analysis, by combining local index theory with the hypoelliptic Laplacian. Coherent Sheaves, Superconnections, and Riemann-Roch-Grothendieck is an important contribution to both the geometric and analytic study of complex manifolds and, as such, it will be a valuable resource for manyresearchers in geometry, analysis, and mathematical physics. .
Titolo autorizzato: Coherent Sheaves, Superconnections, and Riemann-Roch-Grothendieck  Visualizza cluster
ISBN: 3-031-27234-X
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910763598003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Progress in Mathematics, . 2296-505X ; ; 347