Vai al contenuto principale della pagina

Advances in nanostructured materials / / edited by Bibhu Prasad Swain



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Advances in nanostructured materials / / edited by Bibhu Prasad Swain Visualizza cluster
Pubblicazione: Singapore : , : Springer, , [2022]
©2022
Descrizione fisica: 1 online resource (439 pages)
Disciplina: 730
Soggetto topico: Nanostructures
Persona (resp. second.): SwainBibhu Prasad
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Intro -- Preface -- Contents -- About the Editor -- Part I Nanomaterials for Devices -- 1 Methyl Ammonium Lead Bromide Perovskite Films and Their Applications to Optoelectronic Devices -- 1 Introduction -- 2 Fabrication Methods of MAPbBr3 Perovskite Films -- 2.1 One-Step Deposition Process -- 2.2 Two-Step Deposition Process -- 2.3 Ligand Mediated Growth of MAPbBr3 -- 3 Properties of MAPbBr3 Perovskite Films -- 3.1 Structural Properties -- 3.2 Optical Properties -- 4 Applications of MAPbBr3 Perovskite Films -- 4.1 Solar Cells -- 4.2 Light-Emitting Diodes -- 4.3 X-ray Scintillators -- 5 Summary/Conclusion -- References -- 2 Silicon Nanowires: A Magic Material for Hybrid Solar Cells -- 1 Introduction -- 2 Silicon and Its Structure -- 3 Silicon Nanostructures -- 3.1 Silicon Quantum Dots -- 3.2 Si Nanopyramids -- 3.3 Si Nanowires -- 4 Techniques Utilized for the Growth of SiNWs -- 4.1 Electroless Metal Assisted Chemical Etching Method (EMACE) -- 4.2 Lithography Followed by Etching -- 4.3 Vapor-Liquid-Solid (VLS) Technique -- 4.4 Oxide Assisted (OA) Growth of SiNWs -- 5 SiNWs Hybrid Solar Cell -Basic Principle -- 6 Recombination Loses -- 7 SiNWS Hybrid Solar Cell State of Art -- 8 Inorganic Heterojunction SiNWs Solar Cells -- 9 Organic/Inorganic SiNWs Hybrid Solar Cells -- 9.1 SiNWs/PEDOT:PSS Hybrid Solar Cell -- 9.2 SiNWs/P3HT:PCBM Hybrid Solar Cell -- 9.3 SiNWs/Other Polymer Heterojunction Solar Cells -- 10 Conclusion -- References -- 3 Lead-Free Dielectrics: A State-Of-The-Art for Green Energy Storage -- 1 Introduction -- 2 Fundamentals of Dielectric Energy Storage in Capacitors -- 3 Energy Storage in Lead-Free Materials: Bulk to Nano -- 3.1 Ferroelectrics -- 3.2 Relaxor Ferroelectrics -- 3.3 Antiferroelectrics -- 3.4 Glass-Ceramics -- 3.5 Core-Shell Structure -- 3.6 Thick/Thin Films -- 3.7 Polymer Nanocomposites -- 4 Summary -- References.
4 Nanostructure Semiconductor Materials for Device Applications -- 1 Introduction -- 2 Organic Semiconductors -- 2.1 Solar Cells -- 2.2 Organic Light-Emitting Diodes -- 2.3 Organic Field-Effect Transistors -- 2.4 Other Applications -- 3 Inorganic Semiconductors -- 3.1 Solar Cells -- 3.2 ISC-Based OFETs -- 3.3 Gas Sensors -- 4 Organic-Inorganic Semiconductors -- 4.1 Polymer Composites with Nanoparticles -- 4.2 Metal-organic Frameworks -- 4.3 Organic-Inorganic Halide Perovskite -- 5 Conclusion -- References -- 5 Reduced Graphene Oxide/Silicon Nanowire Heterojunction-Fabrication and Photovoltaic Application -- 1 Introduction -- 2 Generations of Solar Cell -- 2.1 First Generation Solar Cells -- 2.2 Second Generation Solar Cells -- 2.3 Third Generation Solar Cells -- 3 Reduced Graphene Oxide/silicon Nanowires (rGO/SiNWs) Heterojunction -- 4 Photovoltaic Application -- 5 Current Density-Voltage (J-V) Characteristics: -- 6 Summary/Conclusion -- References -- 6 Chemical Bath Deposited Zinc Oxide Nanostructured Thin Films and Their Applications -- 1 Introduction -- 2 Chemical Bath Deposition -- 3 ZnO Nanostructures -- 4 Growth Parameters Suitable for Depositing ZnO Nanostructures Based Thin Films by CBD -- 5 Applications of ZnO Thin Films Prepared by CBD -- 5.1 Photocatalysis -- 5.2 UV Photodetectors -- 5.3 Solar Cells -- 6 Characterization of ZnO Nanostructures-Based Thin Films Grown by CBD Technique -- 6.1 XRD Study -- 6.2 SEM Study -- 6.3 Raman Study -- 6.4 PL Properties -- 6.5 UV-Visible Study -- 7 Conclusion -- References -- 7 Recent Trends and Research Challenges on Supercapacitor -- 1 Introduction -- 2 Supercapacitor -- 3 Working of Supercapacitors (SCs) -- 4 Characteristics of Supercapacitors -- 5 Comparison of Supercapacitor and Other Energy-Storing Devices -- 6 Challenges of Supercapacitors -- 7 Electrode Materials for Supercapacitors.
7.1 Carbon-based Materials -- 7.2 Activated-Carbons -- 7.3 Carbon-Nanotubes (CNTs) -- 7.4 Graphene -- 7.5 Conducting Polymers -- 7.6 Polyaniline -- 7.7 Polypyrrole -- 7.8 Metals Oxides -- 7.9 Transition Metal-Sulfides -- 7.10 Composites -- 8 Electrolytes -- 8.1 Aqueous Electrolytes -- 8.2 Organic Electrolytes -- 8.3 Ionic Liquid Electrolytes -- 9 Scope of Supercapacitors in Future -- 10 Conclusion -- References -- Part II Magnetic Nanomaterials and Nanostructured Polymers -- 8 Magnetic Nanoparticles in Wastewater Treatment, Supercapacitor, and Biomedical Applications -- 1 Introduction -- 2 Properties of Magnetic Nanoparticle -- 2.1 Superparamagnetism -- 3 Synthesis of Magnetic Nanoparticles -- 3.1 Magnetic Nanoparticle is Synthesized Using Different Techniques as Follows -- 4 Some Applications of Magnetic Nanoparticles -- 4.1 Wastewater Treatment (Photocatalysis, Degradation, and Adsorption) -- 4.2 Biomedical Applications -- 4.3 Supercapacitor -- 5 Summary/Conclusion -- References -- 9 Effects of Viscosity on the Magnetic-Induced Heat Generation -- 1 Introduction -- 2 Model of Heat Generation and Measurement in Magnetic Hyperthermia -- 2.1 Theoretical Model -- 2.2 Methods of Measurement -- 3 Mechanism -- 4 Effects of Viscosity -- 4.1 Dipolar Interaction -- 4.2 Aggregation and Cluster Formation -- 4.3 Frequency and Amplitude of External Excitation Field -- 4.4 Coated and Uncoated -- 4.5 Size -- 4.6 Anisotropy -- 4.7 Concentration -- 4.8 Shapes -- 5 Summary/Conclusion -- References -- 10 Morphology-Controlled Synthesis and Morphology-Induce Structures of Different Nanoparticles -- 1 Introduction -- 2 An Overview of Particle Growth and Nucleation -- 2.1 Primary Nucleation -- 2.2 Homogeneous Nucleation -- 2.3 Heterogeneous Nucleation -- 2.4 Secondary Nucleation -- 2.5 Crystal Development -- 3 Important Synthesis Techniques.
3.1 Thermal Decomposition Technique -- 3.2 Solvo/Hydrothermal Method -- 3.3 Sol-gel Technique -- 3.4 Microemulsion Method -- 3.5 Co-Precipitation Method -- 3.6 Sonochemical Reduction Method -- 3.7 Gamma Radiation -- 4 Surface Chemical Modification of Nanomaterials -- 5 Growth Mechanism of Different Shape Eu3+ Doped Yttrium Orthophosphate Microcrystal -- 6 Optical Properties -- 7 Conclusion -- References -- 11 Nanostructures in Ionic Liquid -- 1 Introduction -- 2 Protic and Aprotic Ionic Liquids -- 3 Cations and Anions -- 4 Some Properties of Ionic Liquids -- 4.1 Melting Points -- 4.2 Liquid Range and Thermal Stability -- 4.3 Vapor Pressure -- 4.4 Heat Capacity and Heat Transfer -- 4.5 Viscosity -- 4.6 Density -- 4.7 Solubility -- 4.8 Water Stability -- 4.9 Conductivity -- 4.10 Electrochemical Potential Window -- 5 Simulation Approaches to Understanding the Structure -- 6 Nanostructure in Bulk Ionic Liquids -- 6.1 Micelle-Like Nanostructure -- 6.2 Mesoscopic Nanostructure -- 6.3 Nanostructures in IL-Solid Interface -- 7 Exploiting Nanostructure in Applications -- 8 Conclusion -- References -- 12 Recent Advances in Nanostructured Polymers -- 1 Introduction -- 2 Polymer-Based Nanostructured Materials -- 2.1 Polymer Nanoparticles -- 2.2 Polymer Nanofibers, Nanotubes, and Nanowires -- 2.3 Polymer Nanocomposites -- 3 Recent Advances -- 3.1 Drug Delivery -- 3.2 Sensors -- 3.3 Tissue Engineering -- 3.4 Energy Applications -- 3.5 Filtration, Coating, and Others -- 4 Conclusion -- References -- 13 Polymer Nanocomposite Membranes for Water Remediation -- 1 Introduction -- 2 Methods for Preparation of Porous Polymeric Membrane -- 2.1 Phase Inversion Technique -- 2.2 Electrospinning -- 2.3 Solution Casting Followed by Particulate Leaching -- 3 Nanocomposite Membranes for Water Remediation -- 3.1 Carbon-Based Nanocomposite Membrane for Water Remediation.
3.2 Nanoclay-Based Nanocomposite Membrane for Water Remediation -- 3.3 Metal Oxide-Based Nanocomposite Membranes for Wastewater Remediation -- 4 Summary and Prospects -- References -- 14 Low-Dimensional Nanostructured Materials for Sustainable Generation of Water and Energy -- 1 Introduction -- 2 Low-Dimensional Nanomaterials -- 2.1 Zero-Dimensional or 0D -- 2.2 One-Dimensional (1D) -- 2.3 Two-Dimensional (2D) -- 3 Simulation Approach to Nanostructures -- 4 Applications of Low-Dimensional Nanostructured Materials -- 4.1 Desalination of Water -- 4.2 Energy Generation -- 4.3 Solar Energy Using Carbon Nanostructures -- 5 Summary -- References -- 15 X-Ray Probing for the Structural and Functional Studies of CdSe-CdS Nanoparticle for Detector Application -- 1 Introduction -- 2 Theory -- 2.1 X-Ray Theory -- 2.2 Electrical Theory -- 2.3 Quantum Theory -- 3 Experimental -- 3.1 Processing of ECN Fibre -- 3.2 Synthesis of CdSe-CdS Nanoparticle -- 3.3 Luminescent QDs Thin Film Coating -- 3.4 Fabrication of CdSe-CdS Coated ENC Fibre Plate -- 3.5 X-Ray-Induced-Sensing Arrangement -- 3.6 Characterization -- 4 Results and Discussion -- 4.1 X-Ray Diffraction Analysis -- 4.2 X-Ray-Induced Sensing Analysis -- 5 Conclusion -- References -- Part III Ferroelectric Nanomaterials -- 16 Magnetism in Nanostructured Spinel Ferrites with Recent Advances in Processing, Characterization, and Applications -- 1 Introduction -- 2 Magnetism in Spinel Ferrites -- 3 Materials and Method -- 4 Characterization of Magnetic Properties -- 4.1 Fundamentals of Magnetization -- 4.2 Theoretical Models -- 5 Magnetism in Spinel Ferrite Nanoparticles and Their Applications -- 6 Hybrid-Structured with Other Materials and Their Applications -- 7 Conclusion -- References -- 17 Lead-Free Piezoelectric Nanostructures and Their Applications -- 1 Introduction -- 2 Origin of the Piezoelectric Effect.
3 Lead-Free Piezoelectric Materials.
Titolo autorizzato: Advances in Nanostructured Materials  Visualizza cluster
ISBN: 981-16-8390-5
981-16-8391-3
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910743363603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Materials Horizons: from Nature to Nanomaterials