Vai al contenuto principale della pagina

Remote Sensing for Precision Nitrogen Management



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Miao Yuxin Visualizza persona
Titolo: Remote Sensing for Precision Nitrogen Management Visualizza cluster
Pubblicazione: Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica: 1 electronic resource (602 p.)
Soggetto topico: Technology: general issues
History of engineering & technology
Environmental science, engineering & technology
Soggetto non controllato: UAS
multiple sensors
vegetation index
leaf nitrogen accumulation
plant nitrogen accumulation
pasture quality
airborne hyperspectral imaging
random forest regression
sun-induced chlorophyll fluorescence (SIF)
SIF yield indices
upward
downward
leaf nitrogen concentration (LNC)
wheat (Triticum aestivum L.)
laser-induced fluorescence
leaf nitrogen concentration
back-propagation neural network
principal component analysis
fluorescence characteristics
canopy nitrogen density
radiative transfer model
hyperspectral
winter wheat
flooded rice
pig slurry
aerial remote sensing
vegetation indices
N recommendation approach
Mediterranean conditions
nitrogen
vertical distribution
plant geometry
remote sensing
maize
UAV
multispectral imagery
LNC
non-parametric regression
red-edge
NDRE
dynamic change model
sigmoid curve
grain yield prediction
leaf chlorophyll content
red-edge reflectance
spectral index
precision N fertilization
chlorophyll meter
NDVI
NNI
canopy reflectance sensing
N mineralization
farmyard manures
Triticum aestivum
discrete wavelet transform
partial least squares
hyper-spectra
rice
nitrogen management
reflectance index
multiple variable linear regression
Lasso model
Multiplex®3 sensor
nitrogen balance index
nitrogen nutrition index
nitrogen status diagnosis
precision nitrogen management
terrestrial laser scanning
spectrometer
plant height
biomass
nitrogen concentration
precision agriculture
unmanned aerial vehicle (UAV)
digital camera
leaf chlorophyll concentration
portable chlorophyll meter
crop
PROSPECT-D
sensitivity analysis
UAV multispectral imagery
spectral vegetation indices
machine learning
plant nutrition
canopy spectrum
non-destructive nitrogen status diagnosis
drone
multispectral camera
SPAD
smartphone photography
fixed-wing UAV remote sensing
random forest
canopy reflectance
crop N status
Capsicum annuum
proximal optical sensors
Dualex sensor
leaf position
proximal sensing
cross-validation
feature selection
hyperparameter tuning
image processing
image segmentation
nitrogen fertilizer recommendation
supervised regression
RapidSCAN sensor
nitrogen recommendation algorithm
in-season nitrogen management
nitrogen use efficiency
yield potential
yield responsiveness
standard normal variate (SNV)
continuous wavelet transform (CWT)
wavelet features optimization
competitive adaptive reweighted sampling (CARS)
partial least square (PLS)
grapevine
hyperparameter optimization
multispectral imaging
precision viticulture
RGB
multispectral
coverage adjusted spectral index
vegetation coverage
random frog algorithm
active canopy sensing
integrated sensing system
discrete NIR spectral band data
soil total nitrogen concentration
moisture absorption correction index
particle size correction index
coupled elimination
Persona (resp. second.): KhoslaRaj
MullaDavid J
MiaoYuxin
Sommario/riassunto: This book focuses on the fundamental and applied research of the non-destructive estimation and diagnosis of crop leaf and plant nitrogen status and in-season nitrogen management strategies based on leaf sensors, proximal canopy sensors, unmanned aerial vehicle remote sensing, manned aerial remote sensing and satellite remote sensing technologies. Statistical and machine learning methods are used to predict plant-nitrogen-related parameters with sensor data or sensor data together with soil, landscape, weather and/or management information. Different sensing technologies or different modelling approaches are compared and evaluated. Strategies are developed to use crop sensing data for in-season nitrogen recommendations to improve nitrogen use efficiency and protect the environment.
Titolo autorizzato: Remote Sensing for Precision Nitrogen Management  Visualizza cluster
ISBN: 3-0365-5710-5
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910637794503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui