Vai al contenuto principale della pagina

Haskell data analysis cookbook : explore intuitive data analysis techniques and powerful machine learning methods using over 130 practical recipes / / Nishant Shukla ; cover image by Jarek Blaminsky



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Shukla Nishant Visualizza persona
Titolo: Haskell data analysis cookbook : explore intuitive data analysis techniques and powerful machine learning methods using over 130 practical recipes / / Nishant Shukla ; cover image by Jarek Blaminsky Visualizza cluster
Pubblicazione: Birmingham, [England] : , : Packt Publishing, , 2014
©2014
Edizione: 1st edition
Descrizione fisica: 1 online resource (334 p.)
Disciplina: 005.133
Soggetto topico: Haskell (Computer program language)
Soggetto genere / forma: Electronic books.
Persona (resp. second.): BlaminskyJarek
Note generali: "Quick answers to common problems"--Cover.
Includes index.
Nota di contenuto: Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: The Hunt for Data; Introduction; Harnessing data from various sources; Accumulating text data from a file path; Catching I/O code faults; Keeping and representing data from a CSV file; Examining a JSON file with the aeson package; Reading an XML file using the HXT package; Capturing table rows from an HTML page; Understanding how to perform HTTP GET requests; Learning how to perform HTTP POST requests; Traversing online directories for data
Using MongoDB queries in HaskellReading from a remote MongoDB server; Exploring data from a SQLite database; Chapter 2: Integrity and Inspection; Introduction; Trimming excess whitespace; Ignoring punctuation and specific characters; Coping with unexpected or missing input; Validating records by matching regular expressions; Lexing and parsing an e-mail address; Deduplication of nonconflicting data items; Deduplication of conflicting data items; Implementing a frequency table using Data.List; Implementing a frequency table using Data.MultiSet; Computing the Manhattan distance
Computing the Euclidean distanceComparing scaled data using the Pearson correlation coefficient; Comparing sparse data using cosine similarity; Chapter 3: The Science of Words; Introduction; Displaying a number in another base; Reading a number from another base; Searching for a substring using Data.ByteString; Searching a string using the Boyer-Moore-Horspool algorithm; Searching a string using the Rabin-Karp algorithm; Splitting a string on lines, words, or arbitrary tokens; Finding the longest common subsequence; Computing a phonetic code; Computing the edit distance
Computing the Jaro-Winkler distance between two stringsFinding strings within one-edit distance; Fixing spelling mistakes; Chapter 4: Data Hashing; Introduction; Hashing a primitive data type; Hashing a custom data type; Running popular cryptographic hash functions; Running a cryptographic checksum on a file; Performing fast comparisons between data types; Using a high-performance hash table; Using Google's CityHash hash functions for strings; Computing a Geohash for location coordinates; Using a bloom filter to remove unique items; Running MurmurHash, a simple but speedy hashing algorithm
Measuring image similarity with perceptual hashesChapter 5: The Dance with Trees; Introduction; Defining a binary tree data type; Defining a rose tree (multiway tree) data type; Traversing a tree depth-first; Traversing a tree breadth-first; Implementing a Foldable instance for a tree; Calculating the height of a tree; Implementing a binary search tree data structure; Verifying the order property of a binary search tree; Using a self-balancing tree; Implementing a min-heap data structure; Encoding a string using a Huffman tree; Decoding a Huffman code; Chapter 6: Graph Fundamentals
Introduction
Sommario/riassunto: Step-by-step recipes filled with practical code samples and engaging examples demonstrate Haskell in practice, and then the concepts behind the code. This book shows functional developers and analysts how to leverage their existing knowledge of Haskell specifically for high-quality data analysis. A good understanding of data sets and functional programming is assumed.
Titolo autorizzato: Haskell data analysis cookbook  Visualizza cluster
ISBN: 1-78328-634-2
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910464631403321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui