Vai al contenuto principale della pagina
| Autore: |
Challa Sudha <1953->
|
| Titolo: |
Fundamentals of object tracking / / Subhash Challa [and others] [[electronic resource]]
|
| Pubblicazione: | Cambridge : , : Cambridge University Press, , 2011 |
| Descrizione fisica: | 1 online resource (xii, 375 pages) : digital, PDF file(s) |
| Disciplina: | 519.7 |
| Soggetto topico: | Linear programming |
| Programming (Mathematics) | |
| Note generali: | Title from publisher's bibliographic system (viewed on 05 Oct 2015). |
| Nota di bibliografia: | Includes bibliographical references and index. |
| Nota di contenuto: | Cover; FUNDAMENTALS OF OBJECT TRACKING; Title; Copyright; Contents; Preface; 1: Introduction to object tracking; 1.1 Overview of object tracking problems; 1.1.1 Air space monitoring; 1.1.2 Video surveillance; 1.1.3 Weather monitoring; 1.1.4 Cell biology; 1.2 Bayesian reasoning with application to object tracking; 1.2.1 Bayes' theorem; 1.2.2 Application to object tracking; 1.3 Recursive Bayesian solution for object tracking; 1.3.1 The generalized object dynamics equation; 1.3.2 The generalized sensor measurement equation; 1.3.3 Generalized object state prediction and conditional densities |
| 1.3.4 Generalized object state prediction and update1.3.5 Generalized object state filtering; 1.3.6 Generalized object state estimates; 1.4 Summary; 2: Filtering theory and non-maneuvering object tracking; 2.1 The optimal Bayesian filter; 2.1.1 Object dynamics and sensor measurement equations; 2.1.2 The optimal non-maneuvering object tracking filter recursion; 2.2 The Kalman filter; 2.2.1 Derivation of the Kalman filter; 2.2.2 The Kalman filter equations; 2.3 The extended Kalman filter; 2.3.1 Linear filter approximations; 2.3.2 The extended Kalman filter equations | |
| 2.4 The unscented Kalman filter2.4.1 The unscented transformation; 2.4.2 The unscented Kalman filter algorithm; 2.5 The point mass filter; 2.5.1 Transition and prediction densities; 2.5.2 The likelihood function and normalization factor; 2.5.3 Conditional density; 2.5.4 The point mass filter equations; 2.6 The particle filter; 2.6.1 The particle filter for single-object tracking; 2.6.2 The OID-PF for single-object tracking; 2.6.3 Auxiliary bootstrap filter for single-object tracking; 2.6.4 Extended Kalman auxiliary particle filter for single-object tracking; 2.7 Performance bounds | |
| 2.8 Illustrative exampleAngle tracking; 2.9 Summary; 3: Maneuvering object tracking; 3.1 Modeling for maneuvering object tracking; 3.1.1 Single model via state augmentation; 3.1.2 Multiple-model-based approaches; 3.2 The optimal Bayesian filter; 3.2.1 Process, measurement and noise models; 3.2.2 The conditional density and the conditional model probability; 3.2.3 Optimal estimation; 3.3 Generalized pseudo-Bayesian filters; 3.3.1 Generalized pseudo-Bayesian filter of order 1; 3.3.2 Generalized pseudo-Bayesian filter of order 2; 3.4 Interacting multiple model filter | |
| 3.4.1 The IMM filter equations3.5 Particle filters for maneuvering object tracking; 3.5.1 Bootstrap filter for maneuvering object tracking; 3.5.2 Auxiliary bootstrap filter for maneuvering object tracking; 3.5.3 Extended Kalman auxiliary particle filter for maneuvering object tracking; 3.6 Performance bounds; 3.7 Illustrative example; 3.8 Summary; 4: Single-object tracking in clutter; 4.1 The optimal Bayesian filter; 4.1.1 Object dynamics, sensor measurement and noise models; 4.1.2 Conditional density; 4.1.3 Optimal estimation; 4.2 The nearest neighbor filter | |
| 4.2.1 The nearest neighbor filter equations | |
| Sommario/riassunto: | Kalman filter, particle filter, IMM, PDA, ITS, random sets... The number of useful object-tracking methods is exploding. But how are they related? How do they help track everything from aircraft, missiles and extra-terrestrial objects to people and lymphocyte cells? How can they be adapted to novel applications? Fundamentals of Object Tracking tells you how. Starting with the generic object-tracking problem, it outlines the generic Bayesian solution. It then shows systematically how to formulate the major tracking problems - maneuvering, multiobject, clutter, out-of-sequence sensors - within this Bayesian framework and how to derive the standard tracking solutions. This structured approach makes very complex object-tracking algorithms accessible to the growing number of users working on real-world tracking problems and supports them in designing their own tracking filters under their unique application constraints. The book concludes with a chapter on issues critical to successful implementation of tracking algorithms, such as track initialization and merging. |
| Titolo autorizzato: | Fundamentals of object tracking ![]() |
| ISBN: | 1-280-88667-6 |
| 1-139-00985-0 | |
| 9786613727985 | |
| 1-139-00823-4 | |
| 1-139-01037-9 | |
| 1-139-00932-X | |
| 0-511-97583-X | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910457534403321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |