Vai al contenuto principale della pagina

Neural Networks and Statistical Learning / / by Ke-Lin Du, M. N. S. Swamy



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Du Ke-Lin Visualizza persona
Titolo: Neural Networks and Statistical Learning / / by Ke-Lin Du, M. N. S. Swamy Visualizza cluster
Pubblicazione: London : , : Springer London : , : Imprint : Springer, , 2019
Edizione: 2nd ed. 2019.
Descrizione fisica: 1 online resource (XXX, 988 p. 184 illus., 70 illus. in color.)
Disciplina: 001.534
Soggetto topico: Neural networks (Computer science) 
Computational intelligence
Artificial intelligence
Pattern recognition
Signal processing
Image processing
Speech processing systems
Mathematical Models of Cognitive Processes and Neural Networks
Computational Intelligence
Artificial Intelligence
Pattern Recognition
Signal, Image and Speech Processing
Persona (resp. second.): SwamyM. N. S
Nota di contenuto: Introduction -- Fundamentals of Machine Learning -- Perceptrons -- Multilayer perceptrons: architecture and error backpropagation -- Multilayer perceptrons: other learing techniques -- Hopfield networks, simulated annealing and chaotic neural networks -- Associative memory networks -- Clustering I: Basic clustering models and algorithms -- Clustering II: topics in clustering -- Radial basis function networks -- Recurrent neural networks -- Principal component analysis -- Nonnegative matrix factorization and compressed sensing -- Independent component analysis -- Discriminant analysis -- Support vector machines -- Other kernel methods -- Reinforcement learning -- Probabilistic and Bayesian networks -- Combining multiple learners: data fusion and emsemble learning -- Introduction of fuzzy sets and logic -- Neurofuzzy systems -- Neural circuits -- Pattern recognition for biometrics and bioinformatics -- Data mining.
Sommario/riassunto: This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercises and allows readers to gain a practical working understanding of the content. This updated new edition presents recently published results and includes six new chapters that correspond to the recent advances in computational learning theory, sparse coding, deep learning, big data and cloud computing. Each chapter features state-of-the-art descriptions and significant research findings. The topics covered include: • multilayer perceptron; • the Hopfield network; • associative memory models; • clustering models and algorithms; • t he radial basis function network; • recurrent neural networks; • nonnegative matrix factorization; • independent component analysis; •probabilistic and Bayesian networks; and • fuzzy sets and logic. Focusing on the prominent accomplishments and their practical aspects, this book provides academic and technical staff, as well as graduate students and researchers with a solid foundation and comprehensive reference on the fields of neural networks, pattern recognition, signal processing, and machine learning.
Titolo autorizzato: Neural Networks and Statistical Learning  Visualizza cluster
ISBN: 1-4471-7452-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910349336003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui