Vai al contenuto principale della pagina

The Kurzweil-Henstock Integral for Undergraduates : A Promenade Along the Marvelous Theory of Integration / / by Alessandro Fonda



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Fonda Alessandro Visualizza persona
Titolo: The Kurzweil-Henstock Integral for Undergraduates : A Promenade Along the Marvelous Theory of Integration / / by Alessandro Fonda Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2018
Edizione: 1st ed. 2018.
Descrizione fisica: 1 online resource (X, 216 p. 24 illus., 5 illus. in color.)
Disciplina: 515
Soggetto topico: Functions of real variables
Measure theory
Real Functions
Measure and Integration
Nota di contenuto: Functions of one real variable -- Functions of several real variables -- Differential forms -- Differential calculus in RN -- The Stokes–Cartan and the Poincaré theorems -- On differentiable manifolds -- The Banach–Tarski paradox -- A brief historical note.
Sommario/riassunto: This beginners' course provides students with a general and sufficiently easy to grasp theory of the Kurzweil-Henstock integral. The integral is indeed more general than Lebesgue's in RN, but its construction is rather simple, since it makes use of Riemann sums which, being geometrically viewable, are more easy to be understood. The theory is developed also for functions of several variables, and for differential forms, as well, finally leading to the celebrated Stokes–Cartan formula. In the appendices, differential calculus in RN is reviewed, with the theory of differentiable manifolds. Also, the Banach–Tarski paradox is presented here, with a complete proof, a rather peculiar argument for this type of monographs.
Titolo autorizzato: The Kurzweil-Henstock Integral for Undergraduates  Visualizza cluster
ISBN: 3-319-95321-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910300118703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Compact Textbooks in Mathematics, . 2296-4568