Vai al contenuto principale della pagina

Mathematical Tools for Data Mining : Set Theory, Partial Orders, Combinatorics / / by Dan A. Simovici, Chabane Djeraba



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Simovici Dan A Visualizza persona
Titolo: Mathematical Tools for Data Mining : Set Theory, Partial Orders, Combinatorics / / by Dan A. Simovici, Chabane Djeraba Visualizza cluster
Pubblicazione: London : , : Springer London : , : Imprint : Springer, , 2014
Edizione: 2nd ed. 2014.
Descrizione fisica: 1 online resource (834 p.)
Disciplina: 006.312
Soggetto topico: Data mining
Computer science—Mathematics
Computer mathematics
Data Mining and Knowledge Discovery
Mathematics of Computing
Discrete Mathematics in Computer Science
Computational Mathematics and Numerical Analysis
Persona (resp. second.): DjerabaChabane
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references at the end of each chapters and index.
Nota di contenuto: Sets, Relations and Functions -- Partially Ordered Sets -- Combinatorics -- Topologies and Measures -- Linear Spaces -- Norms and Inner Products -- Spectral Properties of Matrices -- Metric Spaces Topologies and Measures -- Convex Sets and Convex Functions -- Graphs and Matrices -- Lattices and Boolean Algebras -- Applications to Databases and Data Mining -- Frequent Item Sets and Association Rules -- Special Metrics -- Dimensions of Metric Spaces -- Clustering.
Sommario/riassunto: Data mining essentially relies on several mathematical disciplines, many of which are presented in this second edition of this book.  Topics include partially ordered sets, combinatorics,  general topology, metric spaces, linear spaces, graph theory.  To motivate the reader a significant number of applications of these mathematical tools are included ranging from association rules, clustering algorithms, classification, data constraints, logical data analysis, etc.  The book is intended as a reference for researchers and graduate students.  The current edition is a significant expansion of the first edition.  We strived to make the book self-contained, and only a general knowledge of mathematics is required.  More than 700 exercises are included and they form an integral part of the material.  Many exercises are in reality supplemental material and their solutions are included.
Titolo autorizzato: Mathematical Tools for Data Mining  Visualizza cluster
ISBN: 1-4471-6407-5
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910298980103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Advanced Information and Knowledge Processing, . 1610-3947