Vai al contenuto principale della pagina

Graph-related optimization and decision support systems / / Saoussen Krichen, Jouhaina Chaouachi



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Krichen Saoussen Visualizza persona
Titolo: Graph-related optimization and decision support systems / / Saoussen Krichen, Jouhaina Chaouachi Visualizza cluster
Pubblicazione: London, England ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014
©2014
Descrizione fisica: 1 online resource (186 p.)
Disciplina: 519.6
Soggetto topico: Constrained optimization
Differential equations, Partial
Telecommunication
Classificazione: 90-0190C3590C2705C90
Persona (resp. second.): ChaouachiJouhaina
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover page; Half-Title page; Title page; Copyright page; Contents; List of Tables; List of Figures; List of Algorithms; Introduction; 1: Basic Concepts in Optimization and Graph Theory; 1.1. Introduction; 1.2. Notation; 1.3. Problem structure and variants; 1.4. Features of an optimization problem; 1.5. A didactic example; 1.6. Basic concepts in graph theory; 1.6.1. Degree of a graph; 1.6.2. Matrix representation of a graph; 1.6.3. Connected graphs; 1.6.4. Itineraries in a graph; 1.6.5. Tree graphs; 1.6.6. The bipartite graphs; 1.7. Conclusion; 2: Knapsack Problems; 2.1. Introduction
2.2. Graph modeling of the knapsack problem2.3. Notation; 2.4. 0-1 knapsack problem; 2.5. An example; 2.6. Multiple knapsack problem; 2.6.1. Mathematical model; 2.6.2. An example; 2.7. Multidimensional knapsack problem; 2.7.1. Mathematical model; 2.7.2. An example; 2.8. Quadratic knapsack problem; 2.8.1. Mathematical model; 2.8.2. An example; 2.9. Quadratic multidimensional knapsack problem; 2.9.1. Mathematical model; 2.9.2. An example; 2.10. Solution approaches for knapsack problems; 2.10.1. The greedy algorithm; 2.10.2. A genetic algorithm for the KP; 2.10.2.1. Solution encoding
2.10.2.2. Crossover2.10.2.3. Mutation; 2.11. Conclusion; 3: Packing Problems; 3.1. Introduction; 3.2. Graph modeling of the bin packing problem; 3.3. Notation; 3.4. Basic bin packing problem; 3.4.1. Mathematical modeling of the BPP; 3.4.2. An example; 3.5. Variable cost and size BPP; 3.5.1. Mathematical model; 3.5.2. An example; 3.6. Vector BPP; 3.6.1. Mathematical model; 3.6.2. An example; 3.7. BPP with conflicts; 3.7.1. Mathematical model; 3.7.2. An example; 3.8. Solution approaches for the BPP; 3.8.1. The next-fit strategy; 3.8.2. The first-fit strategy; 3.8.3. The best-fit strategy
3.8.4. The minimum bin slack3.8.5. The minimum bin slack'; 3.8.6. The least loaded heuristic; 3.8.7. A genetic algorithm for the bin packing problem; 3.8.7.1. Solution encoding; 3.8.7.2. Crossover; 3.8.7.3. Mutation; 3.9. Conclusion; 4: Assignment Problem; 4.1. Introduction; 4.2. Graph modeling of the assignment problem; 4.3. Notation; 4.4. Mathematical formulation of the basic AP; 4.4.1. An example; 4.5. Generalized assignment problem; 4.5.1. An example; 4.6. The generalized multiassignment problem; 4.6.1. An example; 4.7. Weighted assignment problem
4.8. Generalized quadratic assignment problem4.9. The bottleneck GAP; 4.10. The multilevel GAP; 4.11. The elastic GAP; 4.12. The multiresource GAP; 4.13. Solution approaches for solving the AP; 4.13.1. A greedy algorithm for the AP; 4.13.2. A genetic algorithm for the AP; 4.13.2.1. Solution encoding; 4.13.2.2. Crossover; 4.13.2.3. Mutation; 4.14. Conclusion; 5: The Resource Constrained Project Scheduling Problem; 5.1. Introduction; 5.2. Graph modeling of the RCPSP; 5.3. Notation; 5.4. Single-mode RCPSP; 5.4.1. Mathematical modeling of the SM-RCPSP; 5.4.2. An example of an SM-RCPSP
5.5. Multimode RCPSP
Sommario/riassunto: Constrained optimization is a challenging branch of operations research that aims to create a model which has a wide range of applications in the supply chain, telecommunications and medical fields. As the problem structure is split into two main components, the objective is to accomplish the feasible set framed by the system constraints. The aim of this book is expose optimization problems that can be expressed as graphs, by detailing, for each studied problem, the set of nodes and the set of edges. This graph modeling is an incentive for designing a platform that integrates all optimizatio
Titolo autorizzato: Graph-related optimization and decision support systems  Visualizza cluster
ISBN: 1-118-98424-2
1-118-98426-9
1-118-98425-0
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910132164503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Focus series in computer engineering.