Vai al contenuto principale della pagina

Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries [[electronic resource] ] : 7th International Workshop, BrainLes 2021, Held in Conjunction with MICCAI 2021, Virtual Event, September 27, 2021, Revised Selected Papers, Part I / / edited by Alessandro Crimi, Spyridon Bakas



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Crimi Alessandro Visualizza persona
Titolo: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries [[electronic resource] ] : 7th International Workshop, BrainLes 2021, Held in Conjunction with MICCAI 2021, Virtual Event, September 27, 2021, Revised Selected Papers, Part I / / edited by Alessandro Crimi, Spyridon Bakas Visualizza cluster
Pubblicazione: Cham, : Springer Nature, 2022
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Edizione: 1st ed. 2022.
Descrizione fisica: 1 online resource (XXI, 489 p. 171 illus., 134 illus. in color.)
Disciplina: 006.37
Soggetto topico: Computer vision
Artificial intelligence
Computer engineering
Computer networks
Application software
Computer Vision
Artificial Intelligence
Computer Engineering and Networks
Computer and Information Systems Applications
Soggetto non controllato: artificial intelligence
bioinformatics
computer science
computer systems
computer vision
education
image analysis
image processing
image segmentation
learning
machine learning
medical images
neural networks
pattern recognition
segmentation methods
software design
software engineering
software quality
validation
verification and validation
Persona (resp. second.): CrimiAlessandro
BakasSpyridon
Nota di contenuto: Supervoxel Merging towards Brain Tumor Segmentation -- Challenging Current Semi-Supervised Anomaly Segmentation Methods for Brain MRI -- Modeling multi-annotator uncertainty as multi-class segmentation problem -- Modeling multi-annotator uncertainty as multi-class segmentation problem -- Adaptive unsupervised learning with enhanced feature representation for intra-tumor partitioning and survival prediction for glioblastoma -- Predicting isocitrate dehydrogenase mutation status in glioma using structural brain networks and graph neural networks -- Optimization of Deep Learning based Brain Extraction in MRI for Low Resource Environments. Reciprocal Adversarial Learning for Brain Tumor Segmentation: A Solution to BraTS Challenge 2021 Segmentation Task -- Unet3D with Multiple Atrous Convolutions Attention Block for Brain Tumor Segmentation -- BRATS2021: exploring each sequence in multi-modal input for baseline U-net performance -- Automatic Brain Tumor Segmentation using Multi-scale Features and Attention Mechanism -- Simple and Fast Convolutional Neural Network applied to median cross sections for predicting the presence of MGMT promoter methylation in FLAIR MRI scans -- MSViT: Multi Scale Vision Transformer forBiomedical Image Segmentation -- Unsupervised Multimodal -- HarDNet-BTS: A Harmonic Shortcut Network for Brain Tumor Segmentation -- Multimodal Brain Tumor Segmentation Algorithm -- Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images -- Multi-plane UNet++ Ensemble for Glioblastoma Segmentation -- Multimodal Brain Tumor Segmentation using Modified UNet Architecture -- A video data based transfer learning approach for classification of MGMT status in brain tumor MR images -- Multimodal Brain Tumor Segmentation Using a 3D ResUNet in BraTS 2021 -- 3D MRI brain tumour segmentation with autoencoder regularization and Hausdorff distance loss function -- 3D CMM-Net with Deeper Encoder for Semantic Segmentation of Brain Tumors in BraTS2021 Challenge -- Cascaded training pipeline for 3D brain tumor segmentation -- nnU-Net with Region-based Training and Loss Ensembles for Brain Tumor Segmentation -- Brain Tumor Segmentation Using Attention Activated U-Net with Positive Mining -- Automatic segmentation of brain tumor using 3D convolutional neural networks -- Hierarchical and Global Modality Interaction for Brain Tumor Segmentation -- Ensemble Outperforms Single Models in Brain Tumor Segmentation -- Brain Tumor Segmentation using UNet-Context Encoding Network -- Ensemble CNN Networks for GBM Tumors Segmentation using Multi-parametric MRI.
Sommario/riassunto: This two-volume set LNCS 12962 and 12963 constitutes the thoroughly refereed proceedings of the 7th International MICCAI Brainlesion Workshop, BrainLes 2021, as well as the RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge, the Federated Tumor Segmentation (FeTS) Challenge, the Cross-Modality Domain Adaptation (CrossMoDA) Challenge, and the challenge on Quantification of Uncertainties in Biomedical Image Quantification (QUBIQ). These were held jointly at the 23rd Medical Image Computing for Computer Assisted Intervention Conference, MICCAI 2020, in September 2021. The 91 revised papers presented in these volumes were selected form 151 submissions. Due to COVID-19 pandemic the conference was held virtually. This is an open access book.
Titolo autorizzato: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries  Visualizza cluster
ISBN: 3-031-08999-5
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996483157303316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Computer Science, . 1611-3349 ; ; 12962