Vai al contenuto principale della pagina

Spherical Tube Hypersurfaces [[electronic resource] /] / by Alexander Isaev



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Isaev Alexander Visualizza persona
Titolo: Spherical Tube Hypersurfaces [[electronic resource] /] / by Alexander Isaev Visualizza cluster
Pubblicazione: Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2011
Edizione: 1st ed. 2011.
Descrizione fisica: 1 online resource (XII, 230 p.)
Disciplina: 516.3/53
Soggetto topico: Functions of complex variables
Several Complex Variables and Analytic Spaces
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di bibliografia: Includes bibliographical references and index.
Sommario/riassunto: We examine Levi non-degenerate tube hypersurfaces in complex linear space which are "spherical," that is, locally CR-equivalent to the real hyperquadric. Spherical hypersurfaces are characterized by the condition of the vanishing of the CR-curvature form, so such hypersurfaces are flat from the CR-geometric viewpoint. On the other hand, such hypersurfaces are also of interest from the point of view of affine geometry. Thus our treatment of spherical tube hypersurfaces in this book is two-fold: CR-geometric and affine-geometric. As the book shows, spherical tube hypersurfaces possess remarkable properties. For example, every such hypersurface is real-analytic and extends to a closed real-analytic spherical tube hypersurface in complex space. One of our main goals is to provide an explicit affine classification of closed spherical tube hypersurfaces whenever possible. In this book we offer a comprehensive exposition of the theory of spherical tube hypersurfaces, starting with the idea proposed in the pioneering work by P. Yang (1982) and ending with the new approach put forward by G. Fels and W. Kaup (2009).
Titolo autorizzato: Spherical tube hypersurfaces  Visualizza cluster
ISBN: 3-642-19783-3
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996466503403316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Mathematics, . 0075-8434 ; ; 2020