Vai al contenuto principale della pagina

Advanced engineering thermodynamics / / Adrian Bejan



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Advanced engineering thermodynamics / / Adrian Bejan Visualizza cluster
Pubblicazione: Hoboken, N.J., : Wiley, c2016
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , 2016
©2016
Edizione: 4th ed
Descrizione fisica: 1 online resource (789 p.)
Disciplina: 621.402/1
Soggetto topico: Thermodynamics
Classificazione: 501.26
426.5
621.40225
Note generali: Includes bibliographical references and index
Nota di bibliografia: Includes bibliographical references at the end of each chapters and index.
Nota di contenuto: Cover; Title Page; Copyright; Contents; Preface to the First Edition; Preface to the Second Edition; Preface to the Third Edition; Preface; Acknowledgments; Chapter 1 The First Law; 1.1 Terminology; 1.2 Closed Systems; 1.3 Work Transfer; 1.4 Heat Transfer; 1.5 Energy Change; 1.6 Open Systems; 1.7 History; References; Problems; Chapter 2 The Second Law; 2.1 Closed Systems; 2.1.1 Cycle in Contact with One Temperature Reservoir; 2.1.2 Cycle in Contact with Two Temperature Reservoirs; 2.1.3 Cycle in Contact with Any Number of Temperature Reservoirs
2.1.4 Process in Contact with Any Number of Temperature Reservoirs2.2 Open Systems; 2.3 Local Equilibrium; 2.4 Entropy Maximum and Energy Minimum; 2.5 Carathéodory's Two Axioms; 2.6 A Heat Transfer Man's Two Axioms; 2.7 History; References; Problems; Chapter 3 Entropy Generation, or Exergy Destruction; 3.1 Lost Available Work; 3.2 Cycles; 3.2.1 Heat Engine Cycles; 3.2.2 Refrigeration Cycles; 3.2.3 Heat Pump Cycles; 3.3 Nonflow Processes; 3.4 Steady-Flow Processes; 3.5 Mechanisms of Entropy Generation; 3.5.1 Heat Transfer across a Temperature Difference; 3.5.2 Flow with Friction; 3.5.3 Mixing
3.6 Entropy Generation Minimization3.6.1 The Method; 3.6.2 Tree-Shaped Fluid Flow; 3.6.3 Entropy Generation Number; References; Problems; Chapter 4 Single-Phase Systems; 4.1 Simple System; 4.2 Equilibrium Conditions; 4.3 The Fundamental Relation; 4.3.1 Energy Representation; 4.3.2 Entropy Representation; 4.3.3 Extensive Properties versus Intensive Properties; 4.3.4 The Euler Equation; 4.3.5 The Gibbs-Duhem Relation; 4.4 Legendre Transforms; 4.5 Relations between Thermodynamic Properties; 4.5.1 Maxwell's Relations; 4.5.2 Relations Measured during Special Processes; 4.5.3 Bridgman's Table
4.5.4 Jacobians in Thermodynamics4.6 Partial Molal Properties; 4.7 Ideal Gas Mixtures; 4.8 Real Gas Mixtures; References; Problems; Chapter 5 Exergy Analysis; 5.1 Nonflow Systems; 5.2 Flow Systems; 5.3 Generalized Exergy Analysis; 5.4 Air Conditioning; 5.4.1 Mixtures of Air and Water Vapor; 5.4.2 Total Flow Exergy of Humid Air; 5.4.3 Total Flow Exergy of Liquid Water; 5.4.4 Evaporative Cooling; References; Problems; Chapter 6 Multiphase Systems; 6.1 The Energy Minimum Principle; 6.1.1 The Energy Minimum; 6.1.2 The Enthalpy Minimum; 6.1.3 The Helmholtz Free-Energy Minimum
6.1.4 The Gibbs Free-Energy Minimum6.1.5 The Star Diagram; 6.2 The Stability of a Simple System; 6.2.1 Thermal Stability; 6.2.2 Mechanical Stability; 6.2.3 Chemical Stability; 6.3 The Continuity of the Vapor and Liquid States; 6.3.1 The Andrews Diagram and J. Thomson's Theory; 6.3.2 The van der Waals Equation of State; 6.3.3 Maxwell's Equal-Area Rule; 6.3.4 The Clapeyron Relation; 6.4 Phase Diagrams; 6.4.1 The Gibbs Phase Rule; 6.4.2 Single-Component Substances; 6.4.3 Two-Component Mixtures; 6.5 Corresponding States; 6.5.1 Compressibility Factor; 6.5.2 Analytical P(v, T) Equations of State
6.5.3 Calculation of Properties Based on P(v, T) and Specific Heat
Sommario/riassunto: Moving effortlerssly among analysis, essay and graphics, this streamlined edition of Adrian Bejan's powerful presentation is aimed at students in all areas of engineering, physics and life sciences. An advanced, practical approach to the first and second laws of thermodynamicsAdvanced Engineering Thermodynamics bridges the gap between engineering applications and the first and second laws of thermodynamics. Going beyond the basic coverage offered by most textbooks, this authoritative treatment delves into the advanced topics of energy and work as they relate to various engineering fields. This practical approach describes real-world applications of thermodynamics concepts, including solar energy, refrigeration, air conditioning, thermofluid design, chemical design, constructal design, and more. This new fourth edition has been updated and expanded to include current developments in energy storage, distributed energy systems, entropy minimization, and industrial applications, linking new technologies in sustainability to fundamental thermodynamics concepts. Worked problems have been added to help students follow the thought processes behind various applications, and additional homework problems give them the opportunity to gauge their knowledge. The growing demand for sustainability and energy efficiency has shined a spotlight on the real-world applications of thermodynamics. This book helps future engineers make the fundamental connections, and develop a clear understanding of this complex subject. Delve deeper into the engineering applications of thermodynamics Work problems directly applicable to engineering fields Integrate thermodynamics concepts into sustainability design and policy Understand the thermodynamics of emerging energy technologiesCondensed introductory chapters allow students to quickly review the fundamentals before diving right into practical applications. Designed expressly for engineering students, this book offers a clear, targeted treatment of thermodynamics topics with detailed discussion and authoritative guidance toward even the most complex concepts. Advanced Engineering Thermodynamics is the definitive modern treatment of energy and work for today's newest engineers.
Titolo autorizzato: Advanced engineering thermodynamics  Visualizza cluster
ISBN: 9781119281047
1119281040
9781523110001
1523110007
9781119281030
1119281032
9781119245964
1119245966
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9911007099303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui