Vai al contenuto principale della pagina
| Autore: |
Cai Wei
|
| Titolo: |
Deterministic, Stochastic, and Deep Learning Methods for Computational Electromagnetics / / by Wei Cai
|
| Pubblicazione: | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025 |
| Edizione: | 2nd ed. 2025. |
| Descrizione fisica: | 1 online resource (931 pages) |
| Disciplina: | 518 |
| Soggetto topico: | Numerical analysis |
| Differential equations | |
| Electrical engineering | |
| Machine learning | |
| Mathematics - Data processing | |
| Mathematical physics | |
| Numerical Analysis | |
| Differential Equations | |
| Electrical and Electronic Engineering | |
| Machine Learning | |
| Computational Mathematics and Numerical Analysis | |
| Theoretical, Mathematical and Computational Physics | |
| Anàlisi numèrica | |
| Equacions diferencials | |
| Enginyeria elèctrica | |
| Aprenentatge automàtic | |
| Processament de dades | |
| Física matemàtica | |
| Matemàtica discreta | |
| Soggetto genere / forma: | Llibres electrònics |
| Nota di contenuto: | Dielectric constant and fluctuation formulae for molecular dynamics -- Poisson–Boltzmann electrostatics and analytical approximations -- Numerical methods for Poisson–Boltzmann equations -- Random walk stochastic methods for boundary value problems -- Deep Neural Network for Solving PDEs -- Fast algorithms for long-range interactions -- Fast multipole methods for long-range interactions in layered media -- Maxwell equations, potentials, and physical/artificial boundary conditions -- Dyadic Green’s functions in layered media -- High-order methods for surface electromagnetic integral equations -- High-order hierarchical N´ed´elec edge elements -- Time-domain methods – discontinuous Galerkin method and Yee scheme -- Scattering in periodic structures and surface plasmons -- Schr¨ odinger equations for waveguides and quantum dots -- Quantum electron transport in semiconductors -- Non-equilibrium Green’s function (NEGF) methods for transport -- Numerical methods for Wigner quantum transport -- Hydrodynamic electron transport and finite difference methods -- Transport models in plasma media and numerical methods. |
| Sommario/riassunto: | This book provides a well-balanced and comprehensive picture based on clear physics, solid mathematical formulation, and state-of-the-art useful numerical methods in deterministic, stochastic, deep neural network machine learning approaches for computer simulations of electromagnetic and transport processes in biology, microwave and optical wave devices, and nano-electronics. Computational research has become strongly influenced by interactions from many different areas including biology, physics, chemistry, engineering, etc. A multifaceted approach addressing the interconnection among mathematical algorithms and physical foundation and application is much needed to prepare graduate students and researchers in applied mathematics and sciences and engineering for innovative advanced computational research in many applications areas, such as biomolecular solvation in solvents, radar wave scattering, the interaction of lights with plasmonic materials, plasma physics, quantum dots, electronic structure, current flows in nano-electronics, and microchip designs, etc. |
| Titolo autorizzato: | Deterministic, Stochastic, and Deep Learning Methods for Computational Electromagnetics ![]() |
| ISBN: | 9789819601004 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910984695703321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |