Vai al contenuto principale della pagina

2012 Ninth International Symposium on Voronoi Diagrams in Science and Engineering (ISVD)



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: 2012 Ninth International Symposium on Voronoi Diagrams in Science and Engineering (ISVD) Visualizza cluster
Pubblicazione: [Place of publication not identified], : IEEE, 2012
Descrizione fisica: 1 online resource (xii, 150 pages) : illustrations
Disciplina: 620.00151
Soggetto topico: Engineering mathematics
Persona (resp. second.): IEEE Staff
Note generali: Bibliographic Level Mode of Issuance: Monograph
Sommario/riassunto: A geometric graph G is a graph whose vertices are points in the plane and whose edges are line segments weighted by the Euclidean distance between their endpoints. In this setting, a t-spanner of G is a connected spanning subgraph G' with the property that for every pair of vertices x, y, the shortest path from x to y in G' has weight at most L ≥ 1 times the shortest path from x to y in G. The parameter t is commonly referred to as the spanning ratio or the stretch factor. Among the many beautiful properties that Delaunay graphs possess, a constant spanning ratio is one of them. We provide a comprehensive overview of various results concerning the spanning ratio among other properties of different types of Delaunay graphs and their subgraphs.
Titolo autorizzato: 2012 Ninth International Symposium on Voronoi Diagrams in Science and Engineering (ISVD)  Visualizza cluster
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910873409403321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui