Vai al contenuto principale della pagina

Wireless blockchain : principles, technologies and applications / / editors, Bin Cao [et al.]



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Wireless blockchain : principles, technologies and applications / / editors, Bin Cao [et al.] Visualizza cluster
Pubblicazione: Chichester, England : , : John Wiley & Sons, Inc., , [2022]
©2022
Descrizione fisica: 1 online resource (331 pages)
Disciplina: 005.74
Soggetto topico: Wireless communication systems - Industrial applications
Blockchains (Databases)
Personal communication service systems
Persona (resp. second.): CaoBin <active 2021>
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Abbreviations -- Chapter 1 What is Blockchain Radio Access Network? -- 1.1 Introduction -- 1.2 What is B‐RAN -- 1.2.1 B‐RAN Framework -- 1.2.2 Consensus Mechanism -- 1.2.3 Implementation -- 1.3 Mining Model -- 1.3.1 Hash‐Based Mining -- 1.3.2 Modeling of Hash Trials -- 1.3.3 Threat Model -- 1.4 B‐RAN Queuing Model -- 1.5 Latency Analysis of B‐RAN -- 1.5.1 Steady‐State Analysis -- 1.5.2 Average Service Latency -- 1.6 Security Considerations -- 1.6.1 Alternative History Attack -- 1.6.2 Probability of a Successful Attack -- 1.7 Latency‐Security Trade‐off -- 1.8 Conclusions and Future Works -- 1.8.1 Network Effect and Congest Effect -- 1.8.2 Chicken and Eggs -- 1.8.3 Decentralization and Centralization -- 1.8.4 Beyond Bitcoin Blockchain -- References -- Chapter 2 Consensus Algorithm Analysis in Blockchain: PoW and Raft -- 2.1 Introduction -- 2.2 Mining Strategy Analysis for the PoW Consensus‐Based Blockchain -- 2.2.1 Blockchain Preliminaries -- 2.2.2 Proof of Work and Mining -- 2.2.3 Honest Mining Strategy -- 2.2.4 PoW Blockchain Mining Model -- 2.2.4.1 State -- 2.2.4.2 Action -- 2.2.4.3 Transition and Reward -- 2.2.4.4 Objective Function -- 2.2.4.5 Honest Mining -- 2.2.4.6 Selfish Mining -- 2.2.4.7 Lead Stubborn Mining -- 2.2.4.8 Optimal Mining -- 2.2.5 Mining Through RL -- 2.2.5.1 Preliminaries for Original Reinforcement Learning Algorithm -- 2.2.5.2 New Reinforcement Learning Algorithm for Mining -- 2.2.6 Performance Evaluations -- 2.3 Performance Analysis of the Raft Consensus Algorithm -- 2.3.1 Review of Raft Algorithm -- 2.3.2 System Model -- 2.3.3 Network Model -- 2.3.4 Network Split Probability -- 2.3.5 Average Number of Replies -- 2.3.6 Expected Number of Received Heartbeats for a Follower -- 2.3.7 Time to Transition to Candidate.
2.3.8 Time to Elect a New Leader -- 2.3.9 Simulation Results -- 2.3.10 Discussion -- 2.3.10.1 Extended Model -- 2.3.10.2 System Availability and Consensus Efficiency -- 2.4 Conclusion -- References -- Chapter 3 A Low Communication Complexity Double‐layer PBFT Consensus -- 3.1 Introduction -- 3.1.1 PBFT Applied to Blockchain -- 3.1.2 From CFT to BFT -- 3.1.2.1 State Machine Replication -- 3.1.2.2 Primary Copy -- 3.1.2.3 Quorum Voting -- 3.1.3 Byzantine Generals Problem -- 3.1.4 Byzantine Consensus Protocols -- 3.1.4.1 Two‐Phase Commit -- 3.1.4.2 View Stamp -- 3.1.4.3 PBFT Protocol -- 3.1.5 Motivations -- 3.1.6 Chapter Organizations -- 3.2 Double‐Layer PBFT‐Based Protocol -- 3.2.1 Consensus Flow -- 3.2.1.1 The Client -- 3.2.1.2 First‐Layer Protocol -- 3.2.1.3 Second‐Layer Protocol -- 3.2.2 Faulty Primary Elimination -- 3.2.2.1 Faulty Primary Detection -- 3.2.2.2 View Change -- 3.2.3 Garbage Cleaning -- 3.3 Communication Reduction -- 3.3.1 Operation Synchronization -- 3.3.2 Safety and Liveness -- 3.4 Communication Complexity of Double‐Layer PBFT -- 3.5 Security Threshold Analysis -- 3.5.1 Faulty Probability Determined -- 3.5.2 Faulty Number Determined -- 3.6 Conclusion -- References -- Chapter 4 Blockchain‐Driven Internet of Things -- 4.1 Introduction -- 4.1.1 Challenges and Issues in IoT -- 4.1.2 Advantages of Blockchain for IoT -- 4.1.3 Integration of IoT and Blockchain -- 4.2 Consensus Mechanism in Blockchain -- 4.2.1 PoW -- 4.2.2 PoS -- 4.2.3 Limitations of PoW and PoS for IoT -- 4.2.3.1 Resource Consumption -- 4.2.3.2 Transaction Fee -- 4.2.3.3 Throughput Limitation -- 4.2.3.4 Confirmation Delay -- 4.2.4 PBFT -- 4.2.5 DAG -- 4.2.5.1 Tangle -- 4.2.5.2 Hashgraph -- 4.3 Applications of Blockchain in IoT -- 4.3.1 Supply Chain -- 4.3.1.1 Introduction -- 4.3.1.2 Modified Blockchain -- 4.3.1.3 Integrated Architecture -- 4.3.1.4 Security Analysis.
4.3.2 Smart City -- 4.3.2.1 Introduction -- 4.3.2.2 Smart Contract System -- 4.3.2.3 Main Functions of the Framework -- 4.3.2.4 Discussion -- 4.4 Issues and Challenges of Blockchain in IoT -- 4.4.1 Resource Constraints -- 4.4.2 Security Vulnerability -- 4.4.3 Privacy Leakage -- 4.4.4 Incentive Mechanism -- 4.5 Conclusion -- References -- Chapter 5 Hyperledger Blockchain‐Based Distributed Marketplaces for 5G Networks -- 5.1 Introduction -- 5.2 Marketplaces in Telecommunications -- 5.2.1 Wireless Spectrum Allocation -- 5.2.2 Network Slicing -- 5.2.3 Passive optical networks (PON) Sharing -- 5.2.4 Enterprise Blockchain: Hyperledger Fabric -- 5.2.4.1 Shared Ledger -- 5.2.4.2 Organizations -- 5.2.4.3 Consensus Protocol -- 5.2.4.4 Network Peers -- 5.2.4.5 Smart Contracts (chaincodes) -- 5.2.4.6 Channels -- 5.3 Distributed Resource Sharing Market -- 5.3.1 Market Mechanism (Auction) -- 5.3.2 Preliminaries -- 5.4 Experimental Design and Results -- 5.4.1 Experimental Blockchain Deployment -- 5.4.1.1 Cloud Infrastructure -- 5.4.1.2 Container Orchestration: Docker Swarm -- 5.4.2 Blockchain Performance Evaluation -- 5.4.3 Benchmark Apparatus -- 5.4.3.1 Hyperledger Caliper -- 5.4.3.2 Data Collection: Prometheus Monitor -- 5.4.4 Experimental Results -- 5.4.4.1 Maximum Transaction Throughput -- 5.4.4.2 Block Size -- 5.4.4.3 Network Size -- 5.5 Conclusions -- References -- Chapter 6 Blockchain for Spectrum Management in 6G Networks -- 6.1 Introduction -- 6.2 Background -- 6.2.1 Rise of Micro‐operators -- 6.2.2 Case for Novel Spectrum Sharing Models -- 6.2.2.1 Blockchain for Spectrum Sharing -- 6.2.2.2 Blockchain in 6G Networks -- 6.3 Architecture of an Integrated SDN and Blockchain Model -- 6.3.1 SDN Platform Design -- 6.3.2 Blockchain Network Layer Design -- 6.3.3 Network Operation and Spectrum Management -- 6.4 Simulation Design -- 6.5 Results and Analysis.
6.5.1 Radio Access Network and Throughput -- 6.5.2 Blockchain Performance -- 6.5.3 Blockchain Scalability Performance -- 6.6 Conclusion -- Acknowledgments -- References -- Chapter 7 Integration of MEC and Blockchain -- 7.1 Introduction -- 7.2 Typical Framework -- 7.2.1 Blockchain‐Enabled MEC -- 7.2.1.1 Background -- 7.2.1.2 Framework Description -- 7.2.2 MEC‐Based Blockchain -- 7.2.2.1 Background -- 7.2.2.2 Framework Description -- 7.3 Use Cases -- 7.3.1 Security Federated Learning via MEC‐Enabled Blockchain Network -- 7.3.1.1 Background -- 7.3.1.2 Blockchain‐Driven Federated Learning -- 7.3.1.3 Experimental Results -- 7.3.2 Blockchain‐Assisted Secure Authentication for Cross‐Domain Industrial IoT -- 7.3.2.1 Background -- 7.3.2.2 Blockchain‐Driven Cross‐Domain Authentication -- 7.3.2.3 Experimental Results -- 7.4 Conclusion -- References -- Chapter 8 Performance Analysis on Wireless Blockchain IoT System -- 8.1 Introduction -- 8.2 System Model -- 8.2.1 Blockchain‐Enabled IoT Network Model -- 8.2.2 Wireless Communication Model -- 8.3 Performance Analysis in Blockchain‐Enabled Wireless IoT Networks -- 8.3.1 Probability Density Function of SINR -- 8.3.2 TDP Transmission Successful Rate -- 8.3.3 Overall Communication Throughput -- 8.4 Optimal FN Deployment -- 8.5 Security Performance Analysis -- 8.5.1 Eclipse Attacks -- 8.5.2 Random Link Attacks -- 8.5.3 Random FN Attacks -- 8.6 Numerical Results and Discussion -- 8.6.1 Simulation Settings -- 8.6.2 Performance Evaluation without Attacks -- 8.7 Chapter Summary -- References -- Chapter 9 Utilizing Blockchain as a Citizen‐Utility for Future Smart Grids -- 9.1 Introduction -- 9.2 DET Using Citizen‐Utilities -- 9.2.1 Prosumer Community Groups -- 9.2.1.1 Microgrids -- 9.2.1.2 Virtual Power Plants (VPP) -- 9.2.1.3 Vehicular Energy Networks (VEN) -- 9.2.2 Demand Side Management -- 9.2.2.1 Energy Efficiency.
9.2.2.2 Demand Response -- 9.2.2.3 Spinning Reserves -- 9.2.3 Open Research Challenges -- 9.2.3.1 Scalability and IoT Overhead Issues -- 9.2.3.2 Privacy Leakage Issues -- 9.2.3.3 Standardization and Interoperability Issues -- 9.3 Improved Citizen‐Utilities -- 9.3.1 Toward Scalable Citizen‐Utilities -- 9.3.1.1 Challenges -- 9.3.1.2 HARB Framework‐Based Citizen‐Utility -- 9.3.2 Toward Privacy‐Preserving Citizen‐Utilities -- 9.3.2.1 Threat Model -- 9.3.2.2 PDCH System -- 9.4 Conclusions -- References -- Chapter 10 Blockchain‐enabled COVID‐19 Contact Tracing Solutions -- 10.1 Introduction -- 10.2 Preliminaries of BeepTrace -- 10.2.1 Motivation -- 10.2.1.1 Comprehensive Privacy Protection -- 10.2.1.2 Performance is Uncompromising -- 10.2.1.3 Broad Community Participation -- 10.2.1.4 Inclusiveness and Openness -- 10.2.2 Two Implementations are Based on Different Matching Protocols -- 10.3 Modes of BeepTrace -- 10.3.1 BeepTrace‐Active -- 10.3.1.1 Active Mode Workflow -- 10.3.1.2 Privacy Protection of BeepTrace‐Active -- 10.3.2 BeepTrace‐Passive -- 10.3.2.1 Two‐Chain Architecture and Workflow -- 10.3.2.2 Privacy Protection in BeepTrace‐Passive -- 10.4 Future Opportunity and Conclusions -- 10.4.1 Preliminary Approach -- 10.4.2 Future Directions -- 10.4.2.1 Network Throughput and Scalability -- 10.4.2.2 Technology for Elders and Minors -- 10.4.2.3 Battery Drainage and Storage Optimization -- 10.4.2.4 Social and Economic Aspects -- 10.4.3 Concluding Remarks -- References -- Chapter 11 Blockchain Medical Data Sharing -- 11.1 Introduction -- 11.1.1 General Overview -- 11.1.2 Defining Challenges -- 11.1.2.1 Data Security -- 11.1.2.2 Data Privacy -- 11.1.2.3 Source Identity -- 11.1.2.4 Data Utility -- 11.1.2.5 Data Interoperability -- 11.1.2.6 Trust -- 11.1.2.7 Data Provenance -- 11.1.2.8 Authenticity -- 11.1.3 Sharing Paradigms.
11.1.3.1 Institution‐to‐Institution Data Sharing.
Sommario/riassunto: "This book explores recent advances in theory and practice of blockchain technology, blockchain system and blockchain-based service/applications in various industrial sectors including manufacturing, entertainment, public safety, public transport, healthcare, financial services, automotive and energy utilities. The authors present the concept of wireless blockchain networks, with different network topology and communication protocols, for various commonly used blockchain applications, demonstrating how communication resource provision affects the blockchain performance such as scalability, throughput, latency and security levels. Presenting the state-of-the-art and providing readers with insights on how blockchain runs and co-works with the existing system (for example, 5G), the authors show how blockchain runs as a service to support all vertical sectors efficiently and effectively"--
Titolo autorizzato: Wireless blockchain  Visualizza cluster
ISBN: 1-119-79082-4
1-119-79083-2
1-119-79081-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910830137603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: IEEE Press Series.