Vai al contenuto principale della pagina

A biologist's guide to analysis of DNA microarray data [[electronic resource] /] / Steen Knudsen



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Knudsen Steen Visualizza persona
Titolo: A biologist's guide to analysis of DNA microarray data [[electronic resource] /] / Steen Knudsen Visualizza cluster
Pubblicazione: New York, : Wiley-Interscience, c2002
Descrizione fisica: 1 online resource (148 p.)
Disciplina: 572.8/636
572.8636
Soggetto topico: DNA microarrays
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references (p. 104-122) and index.
Nota di contenuto: Machine generated contents note: Preface xi -- Acknowledgments xiii -- 1 Introduction I -- 1.1 Hybridization 1 -- 1.2 Affymetrix GeneChip Technology 3 -- 1.3 Spotted Arrays 6 -- 1.4 Serial Analysis of Gene Expression (SAGE) 8 -- 1.5 Example: Affymetrix vs. Spotted Arrays 9 -- 1.6 Summary 11 -- 1.7 Further Reading 13 -- 2 Overview of Data Analysis 15 -- 3 Basic Data Analysis 17 -- 3.1 Absolute Measurements 17 -- 3.2 Scaling 18 -- 3.2.1 Example: Linear and Nonlinear Scaling 20 -- 3.3 Detection of Outliers 20 -- 3.4 Fold Change 21 -- 3.5 Significance 22 -- 3.5.1 Nonparametric Tests 24 -- 3.5.2 Correction for Multiple Testing 24 -- 3.5.3 Example I: t-Test and ANOVA 25 -- 3.5.4 Example II: Number of Replicates 26 -- 3.6 Summary 28 -- 3.7 Further Reading 29 -- 4 Visualization by Reduction of Dimensionality 33 -- 4.1 Principal Component Analysis 33 -- 4.2 Example 1: PCA on Small Data Matrix 35 -- 4.3 Example 2: PCA on Real Data 37 -- 4.4 Summary 37 -- 4.5 Further Reading 39 -- 5 Cluster Analysis 41 -- 5.1 Hierarchical Clustering 41 -- 5.2 K-means Clustering 43 -- 5.3 Self-Organizing Maps 44 -- 5.4 Distance Measures 45 -- 5.4.1 Example: Comparison of Distance Measures 47 -- 5.5 Normalization 49 -- 5.6 Visualization of Clusters 50 -- 5.6.1 Example: Visualization of Gene Clusters in -- Bladder Cancer 50 -- 5.7 Summary 50 -- 5.8 Further Reading 52 -- 6 Beyond Cluster Analysis 55 -- 6.1 Function Prediction 55 -- 6.2 Discovery of Regulatory Elements in Promoter -- Regions 56 -- 6.2.1 Example 1: Discovery of Proteasomal Element 57 -- 6.2.2 Example 2: Rediscovery of Mlu Cell Cycle -- Box (MCB) 57 -- 6.3 Integration of data 58 -- 6.4 Summary 59 -- 6.5 Further Reading 59 -- 7 Reverse Engineering of Regulatory Networks 63 -- 7.1 The Time-Series Approach 63 -- 7.2 The Steady-State Approach 64 -- 7.3 Limitations of Network Modeling 65 -- 7.4 Example 1: Steady-State Model 65 -- 7.5 Example 2: Steady-State Model on Real Data 66 -- 7.6 Example 3: Steady-State Model on Real Data 68 -- 7.7 Example 4: Linear Time-Series Model 68 -- 7.8 Further Reading 71 -- 8 Molecular Classifiers 75 -- 8.1 Classification Schemes 76 -- 8.1.1 Nearest Neighbor 76 -- 8.1.2 Neural Networks 76 -- 8.1.3 Support Vector Machine 76 -- 8.2 Example I: Classification of Cancer Subtypes 77 -- 8.3 Example II: Classification of Cancer Subtypes 78 -- 8.4 Summary 79 -- 8.5 Further Reading 79 -- 9 Selection of Genes for Spotting on Arrays 81 -- 9.1 Gene Finding 82 -- 9.2 Selection of Regions Within Genes 82 -- 9.3 Selection of Primers for PCR 83 -- 9.4 Selection of Unique Oligomer Probes 83 -- 9.4.1 Example: Finding PCR Primers for Gene -- AF105374 83 -- 9.5 Experimental Design 84 -- 9.6 Further Reading 84 -- 10 Limitations of Expression Analysis 87 -- 10.1 Relative VersusAbsoluteRNA Quantification 88 -- 10.2 Further Reading 88 -- 11 Genotyping Chips 91 -- 11.1 Example: NeuralNetworksfor GeneChipprediction 91 -- 11.2 Further Reading 93 -- 12 Software Issues and Data Formats 95 -- 12.1 Standardization Efforts 96 -- 12.2 Standard File Format 97 -- 12.2.1 Example: Small Scripts in Awk 97 -- 12.3 Software for Clustering 98 -- 12.3.1 Example: Clustering with ClustArray 99 -- 12.4 Software for Statistical Analysis 99 -- 12.4.1 Example: StatisticalAnalysis with R 99 -- 12.4.2 The affyR Software Package 103 -- 12.4.3 Commercial Statistics Packages 103 -- 12.5 Summary 103 -- 12.6 Further Reading 104 -- 13 Commercial Software Packages 105 -- 14 Bibliography 109 -- Index 123.
Sommario/riassunto: A great introductory book that details reliable approaches to problems met instandard microarray data analyses. It provides examples of establishedapproaches such as cluster analysis, function prediction, and principle component analysis. Discover real examples to illustrate the key concepts of data analysis. Written for those without any advanced background in math, statistics, or computer sciences, this book is essential for anyone interested in harnessing the immense potential of microarrays in biology and medicine.
Titolo autorizzato: A biologist's guide to analysis of DNA microarray data  Visualizza cluster
ISBN: 1-280-55646-3
9786610556465
0-471-46118-0
0-471-22758-7
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910830115503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui