Vai al contenuto principale della pagina
Autore: | Hida Haruzo |
Titolo: | Hilbert modular forms and Iwasawa theory / / Haruzo Hida |
Pubblicazione: | Oxford, : Clarendon, 2006 |
Edizione: | 1st ed. |
Descrizione fisica: | 1 online resource (417 p.) |
Disciplina: | 512.74 |
Soggetto topico: | Forms, Modular |
Hilbert modular surfaces | |
Iwasawa theory | |
Note generali: | Description based upon print version of record. |
Nota di bibliografia: | Includes bibliographical references and index. |
Nota di contenuto: | Contents; 1 Introduction; 1.1 Classical Iwasawa theory; 1.1.1 Galois theoretic interpretation of the class group; 1.1.2 The Iwasawa algebra as a deformation ring; 1.1.3 Pseudo-representations; 1.1.4 Two-dimensional universal deformations; 1.2 Selmer groups; 1.2.1 Deligne's rationality conjecture; 1.2.2 Ordinary Galois representations; 1.2.3 Greenberg's Selmer groups; 1.2.4 Selmer groups with general coefficients; 1.3 Deformation and adjoint square Selmer groups; 1.3.1 Nearly ordinary deformation rings; 1.3.2 Adjoint square Selmer groups and differentials |
1.3.3 Universal deformation rings are noetherian1.3.4 Elliptic modularity at a glance; 1.4 Iwasawa theory for deformation rings; 1.4.1 Galois action on deformation rings; 1.4.2 Control of adjoint square Selmer groups; 1.4.3 Λ-adic forms; 1.5 Adjoint square L-invariants; 1.5.1 Balanced Selmer groups; 1.5.2 Greenberg's L-invariant; 1.5.3 Proof of Theorem 1.80; 2 Automorphic forms on inner forms of GL(2); 2.1 Quaternion algebras over a number field; 2.1.1 Quaternion algebras; 2.1.2 Orders of quaternion algebras; 2.2 A short review of algebraic geometry; 2.2.1 Affine schemes | |
2.2.2 Affine algebraic groups2.2.3 Schemes; 2.3 Automorphic forms on quaternion algebras; 2.3.1 Arithmetic quotients; 2.3.2 Archimedean Hilbert modular forms; 2.3.3 Hilbert modular forms with integral coefficients; 2.3.4 Duality and Hecke algebras; 2.3.5 Quaternionic automorphic forms; 2.3.6 The Jacquet-Langlands correspondence; 2.3.7 Local representations of GL(2); 2.3.8 Modular Galois representations; 2.4 The integral Jacquet-Langlands correspondence; 2.4.1 Classical Hecke operators; 2.4.2 Hecke algebras; 2.4.3 Cohomological correspondences; 2.4.4 Eichler-Shimura isomorphisms | |
2.5 Theta series2.5.1 Quaternionic theta series; 2.5.2 Siegel's theta series; 2.5.3 Transformation formulas; 2.5.4 Theta series of imaginary quadratic fields; 2.6 The basis problem of Eichler; 2.6.1 The elliptic Jacquet-Langlands correspondence; 2.6.2 Eichler's integral correspondence; 3 Hecke algebras as Galois deformation rings; 3.1 Hecke algebras; 3.1.1 Automorphic forms on definite quaternions; 3.1.2 Hecke operators; 3.1.3 Inner products; 3.1.4 Ordinary Hecke algebras; 3.1.5 Automorphic forms of higher weight; 3.2 Galois deformation; 3.2.1 Minimal deformation problems | |
3.2.2 Tangent spaces of local deformation functors3.2.3 Taylor-Wiles systems; 3.2.4 Hecke algebras are universal; 3.2.5 Flat deformations; 3.2.6 Freeness over the Hecke algebra; 3.2.7 Hilbert modular basis problems; 3.2.8 Locally cyclotomic deformation; 3.2.9 Locally cyclotomic Hecke algebras; 3.2.10 Global deformation over a p-adic field; 3.3 Base change; 3.3.1 p-Ordinary Jacquet-Langlands correspondence; 3.3.2 Base fields of odd degree; 3.3.3 Automorphic base change; 3.3.4 Galois base change; 3.4 L-invariants of Hilbert modular forms; 3.4.1 Statement of the result | |
3.4.2 Deformation without monodromy conditions | |
Sommario/riassunto: | Describing the applications found for the Wiles and Taylor technique, this book generalizes the deformation theoretic techniques of Wiles-Taylor to Hilbert modular forms (following Fujiwara's treatment), and also discusses applications found by the author. |
Titolo autorizzato: | Hilbert modular forms and Iwasawa theory |
ISBN: | 1-280-90406-2 |
9786610904068 | |
0-19-151387-3 | |
1-4294-6994-3 | |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910819649703321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilitĂ qui |