Vai al contenuto principale della pagina

Function classes on the unit disc : an introduction / / Miroslav Pavlović



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Pavlović Miroslav Visualizza persona
Titolo: Function classes on the unit disc : an introduction / / Miroslav Pavlović Visualizza cluster
Pubblicazione: Berlin : , : De Gruyter, , [2014]
©2014
Descrizione fisica: 1 online resource (463 p.)
Disciplina: 510
Soggetto topico: Functional analysis
Soggetto non controllato: Bergman Space
Besov-Lipschitz Space
Bounded Mean Oscillation
Hardy Space
Littlewood-Paley g-Function
Classificazione: SK 600
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Front matter -- Preface / Pavlović, Miroslav -- Contents -- 1. The Poisson integral and Hardy spaces -- 2. Subharmonic functions and Hardy spaces -- 3. Subharmonic behavior and mixed norm spaces -- 4. Taylor coefficients with applications -- 5. Besov spaces -- 6. The dual of H1 and some related spaces -- 7. Littlewood-Paley theory -- 8. Lipschitz spaces of first order -- 9. Lipschitz spaces of higher order -- 10. One-to-one mappings -- 11. Coefficients multipliers -- 12. Toward a theory of vector-valued spaces -- A. Quasi-Banach spaces -- B. Interpolation and maximal functions -- Bibliography -- Index
Sommario/riassunto: This monograph contains a study on various function classes, a number of new results and new or easy proofs of old results (Fefferman-Stein theorem on subharmonic behavior, theorems on conjugate functions and fractional integration on Bergman spaces, Fefferman's duality theorem), which are interesting for specialists; applications of the Hardy-Littlewood inequalities on Taylor coefficients to (C, α)-maximal theorems and (C, α)-convergence; a study of BMOA, due to Knese, based only on Green's formula; the problem of membership of singular inner functions in Besov and Hardy-Sobolev spaces; a full discussion of g-function (all p › 0) and Calderón's area theorem; a new proof, due to Astala and Koskela, of the Littlewood-Paley inequality for univalent functions; and new results and proofs on Lipschitz spaces, coefficient multipliers and duality, including compact multipliers and multipliers on spaces with non-normal weights. It also contains a discussion of analytic functions and lacunary series with values in quasi-Banach spaces with applications to function spaces and composition operators. Sixteen open questions are posed. The reader is assumed to have a good foundation in Lebesgue integration, complex analysis, functional analysis, and Fourier series. Further information can be found at the author's website at http://poincare.matf.bg.ac.rs/~pavlovic.
Titolo autorizzato: Function classes on the unit disc  Visualizza cluster
ISBN: 3-11-028190-2
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910787601603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: De Gruyter Studies in Mathematics